- 314.50 KB
- 2021-05-26 发布
1.(2018·高考全国卷Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为( )
A. B. C. D.
解析:选C.不妨设a>0,因为椭圆C的一个焦点为(2,0),所以c=2,所以a2=4+4=8,所以a=2,所以椭圆C的离心率e==.
2.已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+=0相切,则椭圆C的方程为( )
A.+=1 B.+=1
C.+=1 D.+=1
解析:选C.由题意知e==,所以e2===,即a2=b2.以原点为圆心,椭圆的短半轴长为半径的圆的方程为x2+y2=b2,由题意可知b==,所以a2=4,b2=3.故椭圆C的方程为+=1,故选C.
3.设椭圆+=1的焦点为F1,F2,点P在椭圆上,若△PF1F2是直角三角形,则△PF1F2的面积为( )
A.3 B.3或
C. D.6或3
解析:选C.由已知a=2,b=,c=1,则点P为短轴顶点(0,)时,∠F1PF2=,△PF1F2是正三角形,若△PF1F2是直角三角形,则直角顶点不可能是点P,只能是焦点F1(或F2)为直角顶点,此时|PF1|==,S△PF1F2=··2c==.故选C.
4.已知F是椭圆+=1(a>b>0)的左焦点,A为右顶点,P是椭圆上一点,PF⊥x轴,|PF|=|AF|,则该椭圆的离心率是( )
A. B.
C. D.
解析:选B.由题可知点P的横坐标是-c,代入椭圆方程,有+=1,得y=±.又|PF|=|AF|,即=(a+c),化简得4c2+ac-3a2=0,即4e2+e-3=0,解得e=或e=-1(舍去).
5.(2018·高考全国卷Ⅱ)已知F1,F2是椭圆C:+=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为( )
A. .
C. .
解析:选D.由题意可得椭圆的焦点在x轴上,如图所示,设|F1F2|=2c,因为△PF1F2为等腰三角形,且∠F1F2P=120°,所以|PF2|=|F1F2|=2c,所以|OF2|=c,所以点P坐标为(c+2ccos 60°,2csin 60°),即点P(2c,c).因为点P在过点A,且斜率为的直线上,所以=,解得=,所以e=,故选D.
6.已知方程+=1表示焦点在y轴上的椭圆,则实数k的取值范围是________.
解析:因为方程+=1表示焦点在y轴上的椭圆,则由得故k的取值范围为(1,2).
答案:(1,2)
7.若n是2和8的等比中项,则圆锥曲线x2+=1的离心率是________.
解析:由n2=2×8,得n=±4,当n=4时,曲线为椭圆,其离心率为e==;当n=-4时,曲线为双曲线,其离心率为e==.
答案:或
8.已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比是2∶,则椭圆C的方程是_________________________________.
解析:设椭圆C的方程为+=1(a>b>0).
由题意知
所以椭圆C的方程为+=1.
答案:+=1
9.已知椭圆C:x2+2y2=4.
(1)求椭圆C的离心率.
(2)设O为原点.若点A在直线y=2上,点B在椭圆C上,且OA⊥OB,求线段AB长度的最小值.
解:(1)由题意,椭圆C的标准方程为+=1.
所以a2=4,b2=2,从而c2=a2-b2=2.
因此a=2,c=.
故椭圆C的离心率e==.
(2)设点A,B的坐标分别为(t,2),(x0,y0),其中x0≠0.
因为OA⊥OB,所以·=0,
即tx0+2y0=0,
解得t=-.又x+2y=4,所以|AB|2=(x0-t)2+(y0-2)2=+(y0-2)2
=x+y++4=x+++4=++4(0b>0),
由题意可得c=,又e==,所以a=2.
所以b2=a2-c2=2,
所以椭圆的标准方程为+=1.
(2)设A(x1,y1),B(x2,y2),
由=2,得
验证易知直线AB的斜率存在,设直线AB的方程为y=kx+1,代入椭圆方程整理,得(2k2+1)x2+4kx-2=0,所以x1+x2=,x1·x2=.
将x1=-2x2代入上式可得,()2=,
解得k2=.
所以△AOB的面积S=|OP|·|x1-x2|==·=.
1.(2019·广州综合测试(一))已知F1,F2分别是椭圆C:+=1(a>b>0)的左、右焦点,若椭圆C上存在点P使得∠F1PF2为钝角,则椭圆C的离心率的取值范围是( )
A.(,1) B.(,1)
C.(0,) D.(0,)
解析:选A.法一:设P(x0,y0),由题易知|x0|x+y有解,即c2>(x+y)min,又y=b2-x,xb2,又b2=a2-c2,所以e2=>,解得e>,又0,又0b>0),焦距为2c,右焦点为F′,连接PF′,如图所示.因为F(-2,0)为C的左焦点,所以c=2.由|OP|=|OF|=|OF′|知,∠FPF′=90°,即FP⊥PF′.
在Rt△PFF′中,由勾股定理,得|PF′|===8.由椭圆定义,得|PF|+|PF′|=2a=4+8=12,所以a=6,a2=36,于是b2=a2-c2=36-(2)2=16,所以椭圆C的方程为+=1.
4.已知椭圆方程为+=1(a>b>0),A,B分别是椭圆长轴的两个端点,M,N是椭圆上关于x轴对称的两点,直线AM,BN的斜率分别为k1,k2,若|k1·k2|=,则椭圆的离心率为________.
解析:设M(x0,y0),则N(x0,-y0),|k1·k2|=====,
从而e==.
答案:
5.(2017·高考北京卷)已知椭圆C的两个顶点分别为A(-2,0),B(2,0),焦点在x轴上,离心率为.
(1)求椭圆C的方程;
(2)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4∶5.
解:(1)设椭圆C的方程为+=1(a>b>0).
由题意得解得c=.
所以b2=a2-c2=1.
所以椭圆C的方程为+y2=1.
(2)证明:设M(m,n),则D(m,0),N(m,-n).
由题设知m≠±2,且n≠0.
直线AM的斜率kAM=,故直线DE的斜率kDE=-.
所以直线DE的方程为y=-(x-m).
直线BN的方程为y=(x-2).
联立解得点E的纵坐标yE=-.
由点M在椭圆C上,得4-m2=4n2,
所以yE=-n.
又S△BDE=|BD|·|yE|=|BD|·|n|,
S△BDN=|BD|·|n|,
所以△BDE与△BDN的面积之比为4∶5.
6.(2019·合肥质量检测(一))已知点F为椭圆E:+=1(a>b>0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线+=1与椭圆E有且仅有一个交点M.
(1)求椭圆E的方程;
(2)设直线+=1与y轴交于P,过点P的直线l与椭圆E交于不同的两点A,B若λ|PM|2=|PA|·|PB|,求实数λ的取值范围.
解:(1)由题意,得a=2c,b=c,则椭圆E为+=1.
由,得x2-2x+4-3c2=0.
因为直线+=1与椭圆E有且仅有一个交点M,
所以Δ=4-4(4-3c2)=0⇒c2=1,
所以椭圆E的方程为+=1.
(2)由(1)得M(1,),
因为直线+=1与y轴交于P(0,2),
所以|PM|2=,
当直线l与x轴垂直时,
|PA|·|PB|=(2+)×(2-)=1,
所以λ|PM|2=|PA|·|PB|⇒λ=,
当直线l与x轴不垂直时,设直线l的方程为y=kx+2,A(x1,y1),B(x2,y2),
由⇒(3+4k2)x2+16kx+4=0,
依题意得,x1x2=,且Δ=48(4k2-1)>0,
所以|PA|·|PB|=(1+k2)x1x2=(1+k2)·=1+=λ,所以λ=(1+),
因为k2>,所以<λ<1.
综上所述,λ的取值范围是[,1).
相关文档
- 2020届一轮复习人教A版高考政治人2021-05-26 13:27:1812页
- 高考化学二轮复习作业卷化学反应热2021-05-26 12:36:269页
- 高考第一轮复习数学53两点间距离公2021-05-26 11:38:5410页
- 2020秋八年级数学上册第五章《二元2021-05-26 11:36:3943页
- 高考一轮复习数学资料赢在高考 412021-05-26 10:41:495页
- 智慧测评高考生物人教版总复习作业2021-05-26 10:04:329页
- 2020届一轮复习人教A版高考政治人2021-05-26 02:42:3023页
- 高考第一轮复习数学52向量的数量积2021-05-26 01:01:179页
- 2020届一轮复习人教A版高考政治人2021-05-25 18:51:316页
- 高考生物人教版总复习作业必修基因2021-05-25 14:27:448页