- 351.00 KB
- 2021-05-25 发布
第一章 集合与常用逻辑用语
[深研高考·备考导航]
为教师备课、授课提供丰富教学资源
[五年考情]
考点
2016年
2015年
2014年
2013年
2012年
集合的基本运算
1,5分(理)
1,5分(文)
1,5分(理)
1,5分(文)
1,5分(理)
1,5分(文)
2,5分(理)
1,5分(文)
1,5分(理)
1,5分(文)
命题及其关系
8,5分(理)
7,5分(文)
6,5分(理)
8,5分(文)
8,5分(理)
10,5分(理)
4,5分(文)
5,5分(理)
7,5分(理)
9,5分(理)
充分条件与必要条件
6,5分(文)
3,5分(文)
2,5分(理)
2,5分(文)
4,5分(理)
3,5分(文)
3,5分(理)
4,5分(文)
[重点关注]
综合近5年浙江卷高考试题,我们发现单独考查集合的运算的可能性较大,命题及其关系与充要条件是高考的必考内容,复习时应加以重视.
第一节 集 合
1.元素与集合
(1)集合中元素的三个特性:确定性、互异性、无序性.
(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.
(3)集合的三种表示方法:列举法、描述法、Venn图法.
2.集合间的基本关系
(1)子集:若对∀x∈A,都有x∈B,则A⊆B或B⊇A.
(2)真子集:若A⊆B,但∃x∈B,且x∉A,则AB或BA.
(3)相等:若A⊆B,且B⊆A,则A=B.
(4)空集的性质:∅是任何集合的子集,是任何非空集合的真子集.
3.集合的基本运算
并集
交集
补集
图形表示
符号表示
A∪B
A∩B
∁UA
意义
{x|x∈A或x∈B}
{x|x∈A且x∈B}
{x|x∈U且x∉A}
4.集合关系与运算的常用结论
(1)若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.
(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.
(3)A⊆B⇔A∩B=A⇔A∪B=B.
(4)∁U(A∩B)=(∁UA)∪(∁UB),∁U(A∪B)=(∁UA)∩(∁UB).
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)任何集合都有两个子集.( )
(2)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )
(3)若{x2,1}={0,1},则x=0,1.( )
(4)若A∩B=A∩C,则B=C.( )
[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.
(2)错误.集合A是函数y=x2的定义域,即A=(-∞,+∞);集合B是函数y=x2的值域,即B=[0,+∞);集合C是抛物线y=x2上的点集.因此A,B,C不相等.
(3)错误.当x=1时,不满足互异性.
(4)错误.当A=∅时,B,C可为任意集合.
[答案] (1)× (2)× (3)× (4)×
2.(教材改编)若集合A={x∈N|x≤},a=2,则下列结论正确的是
( )
A.{a}⊆A B.a⊆A
C.{a}∈A D.a∉A
D [由题意知A={0,1,2,3},由a=2,知a∉A.]
3.设集合A={x|x2-4x+3<0},B={x|2x-3>0},则A∩B=( )
A. B.
C. D.
D [∵x2-4x+3<0,∴1<x<3,∴A={x|1<x<3}.
∵2x-3>0,∴x>,∴B=.
∴A∩B={x|1<x<3}∩=.
故选D.]
4.(2017·金华十校第一学期调研)已知全集U=R,集合M={x|x2-2x-3≤0},N={y|y=-x2+1},则M∩(∁UN)=( )
A.{x|-1≤x≤1} B.{x|-1≤x<1}
C.{x|1≤x≤3} D.{x|11},故M∩(∁UN)={x|14}
(1)B (2)D [(1)(1)∵Q={x∈R|x2≥4},
∴∁RQ={x∈R|x2<4}={x|-24},故选D.]
[规律方法] 1.求集合的交集和并集时首先应明确集合中元素的属性,然后利用交集和并集的定义求解.
2.在进行集合的运算时要尽可能地借助Venn图和数轴使抽象问题直观化.一般地,集合元素离散时用Venn图表示;集合元素连续时用数轴表示,用数轴表示时要注意端点值的取舍.
易错警示:在解决有关A∩B=∅,A⊆B等集合问题时,往往忽视空集的情况,一定要先考虑∅是否成立,以防漏解.
[思想与方法]
1.在解题时经常用到集合元素的互异性,一方面利用集合元素的互异性能顺利找到解题的切入点;另一方面,对求出的字母的值,应检验是否满足集合元素的互异性,以确保答案正确.
2.求集合的子集(真子集)个数问题,需要注意的是:首先,过好转化关,即把图形语言转化为符号语言;其次,当集合的元素个数较少时,常利用枚举法解决.
3.对于集合的运算,常借助数轴、Venn图求解.
(1)对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围,关键在于转化成关于参数的方程或不等式关系.
(2)对离散的数集间的运算,或抽象集合间的运算,可借助Venn图,这是数形结合思想的又一体现.
[易错与防范]
1.集合问题解题中要认清集合中元素的属性(是数集、点集还是其他类型集合),要对集合进行化简.
2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,以防漏解.
3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.
4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.
课时分层训练(一) 集 合
A组 基础达标
(建议用时:30分钟)
一、选择题
1.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B=( )
A.{1} B.{1,2}
C.{0,1,2,3} D.{-1,0,1,2,3}
C [B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1}.又A={1,2,3},所以A∪B={0,1,2,3}.]
2.已知集合A={1,2,3},B={2,3},则( ) 【导学号:51062002】
A.A=B B.A∩B=∅
C.AB D.BA
D [∵A={1,2,3},B={2,3},∴2,3∈A且2,3∈B,1∈A但1∉B,∴BA.]
3.(2017·湖州模拟)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为( )
A.1 B.2
C.3 D.4
D [由x2-3x+2=0,得x=1或x=2,
∴A={1,2}.
由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4},共4个.]
4.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )
A.(-1,1) B.(0,1)
C.(-1,+∞) D.(0,+∞)
C [由已知得A={y|y>0},B={x|-1-1}.]
5.(2017·杭州第一次质检)设集合A={x|x2-2x≥0},B={x|-1