• 111.50 KB
  • 2021-02-26 发布

2020九年级数学上册二次函数的图象(第2课时)

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  • 下载文档
  1. 1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  2. 2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  3. 文档侵权举报QQ:3215808601
‎1.2 二次函数的图象(第2课时)‎ ‎1.函数y=a(x-m)2的图象:与函数y=ax2的图象只是位置不同,它可由y=ax2的图象向________(当m>0)或向________(当m<0)平移|m|个单位得到.函数y=a(x-m)2的顶点坐标为________,对称轴为__________.‎ ‎2.函数y=a(x-m)2+k的图象:可由函数y=ax2的图象先向右(当m________0)或向左(当m________0)平移|m|个单位,再向上(当k________0)或向下(当k________0)平移________个单位得到,顶点是________,对称轴是__________.‎ A组 基础训练 ‎1.抛物线y=(x+3)2+1的顶点坐标是( )‎ A.(-3,1) B.(-3,-1) C.(3,-1) D.(3,1)‎ ‎2.在同一坐标平面内,图象不可能由函数y=2x2+1的图象通过平移变换或轴对称变换得到的函数是( )‎ A.y=2(x+1)2-1 B.y=2x2+‎3 C.y=-2x2-1 D.y=x2-1‎ ‎3.如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=-2(x-h)2+k,则下列结论正确的是( )‎ A.h>0,k>0 B.h<0,k>‎0 C.h<0,k<0 D.h>0,k<0‎ 第3题图 4. 某广场中心标志性建筑处有高低不同的各种喷泉,其中一支高度为1m的喷水管喷水最大高度为3m,此时喷水水平距离为m,在如图所示的坐标系中,这支喷泉的函数关系式是( )‎ 6‎ 第4题图 A.y=-+3‎ B.y=3+1‎ C.y=-8+3‎ D.y=-8+3‎ ‎5.抛物线y=3(x+2)2可由抛物线__________向________平移2个单位得到,它的顶点坐标为________,对称轴是直线x=________,除顶点外,图象在x轴的________方,开口向________.‎ ‎6.二次函数图象的顶点坐标为(2,1),它的形状与抛物线y=-2x2相同,则这个二次函数的解析式为 .‎ ‎7.y=-(x-3)2+1的图象可以由y=-(x+1)2-3的图象先向________平移________个单位,再向________平移________个单位得到.‎ ‎8.指出下列抛物线的开口方向、对称轴和顶点坐标:‎ 抛物线 开口 对称轴 顶点坐标 ‎(1)y=(x+2)2‎ ‎(2)y=-x2-1‎ ‎(3)y=-2(x-2)2+3‎ ‎(4)y=(x+)2- ‎9.若二次函数y=ax2+c(a≠0)的图象经过点(-3,2),(0,-1).‎ ‎(1)求该二次函数的解析式;‎ ‎(2)指出二次函数y=ax2+c(a≠0)图象的开口方向、对称轴和顶点坐标.‎ 6‎ ‎10.已知函数y=(x+1)2-4.‎ ‎(1)指出函数图象的开口方向、对称轴和顶点坐标;‎ ‎(2)若将该抛物线先向右平移2个单位,再向上平移4个单位,求得到的抛物线的解析式;‎ ‎(3)原抛物线经过怎样的平移后顶点在原点?‎ B组 自主提高 ‎11.如图,由抛物线y=(x+2)2,y=(x+2)2+3和直线x=1,x=-2所围阴影部分的面积为________.‎ 第11题图 ‎12.已知抛物线y=-2(x+1)2+3,将此抛物线绕原点旋转180°后得到新抛物线的解析式为____________.‎ ‎13.已知二次函数y=(x-‎2a)2+(a-1)(a为常数),当a取不同的值时,其图象构成一个“抛物线系”,如图分别是当a=-1,a=0,a=1时二次函数的图象,它们的顶点在一条直线上,这条直线的解析式是y=________.‎ 6‎ 第13题图 C组 综合运用 ‎14.某公园要建造一个圆形喷水池,在水池中央垂直于水面竖一根柱子,连喷头在内柱高为‎1m,水流在各个方向上沿形状相同的抛物线路径落下,如图1所示.根据设计图纸已知:在图2中,抛物线的最高点M距离柱子OA为‎1m,距离地面OB为‎1.8m.‎ 第14题图 ‎(1)求图2中抛物线的解析式(不必求x的取值范围);‎ ‎(2)如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?‎ 6‎ 参考答案 ‎1.2 二次函数的图象(第2课时)‎ ‎【课堂笔记】‎ 1. 右 左 (m,0) 直线x=m ‎ 2. ‎> < > < |k| (m,k) 直线x=m ‎【课时训练】‎ ‎1-4. ADAC ‎ 4. y=3x2 左 (-2,0) -2 上 上 ‎ 5. y=-2(x-2)2+1或y=2(x-2)2+1 ‎ 6. 右 4 上 4 ‎ 7. 抛物线 开口 对称轴 顶点坐标 ‎(1)y=(x+2)2‎ 向上 直线x=-2‎ ‎(-2,0)‎ ‎(2)y=-x2-1‎ 向下 y轴 ‎(0,-1)‎ ‎(3)y=-2(x-2)2+3‎ 向下 直线x=2‎ ‎(2,3)‎ ‎(4)y=(x+)2- 向上 直线x=- ‎(-,-)‎ 8. ‎(1)二次函数的解析式为y=x2-1 (2)它的开口方向向上,对称轴为y轴,顶点坐标为(0,-1). ‎ 9. ‎(1)顶点(-1,-4),开口向上,对称轴为直线x=-1; (2)y=(x-1)2; (3)y=(x+1)2-4向右平移1个单位,再向上平移4个单位. ‎ 10. ‎9 ‎ 11. y=2(x-1)2-3‎ 12. x-1‎ ‎14.(1)∵顶点为(1,1.8),∴设 y=a(x-1)2+1.8,把A(0,1)代入得a=-,∴y=- (x-1)2+1.8;‎ 6‎ ‎(2)当y=0时,- (x-1)2+1.8=0,x1=2.5,x2=-0.5(舍去),∴水池半径至少为‎2.5m.‎ 6‎