- 371.50 KB
- 2021-05-23 发布
第二节 固体、液体和气体
一、固体
1.分类:固体分为晶体和非晶体两类.晶体分单晶体和多晶体.
2.晶体与非晶体的比较
单晶体
多晶体
非晶体
外形
规则
不规则
不规则
熔点
确定
确定
不确定
物理性质
各向异性
各向同性
各向同性
典型物质
石英、云母、食盐、硫酸铜
玻璃、蜂蜡、松香
形成与转化
有的物质在不同条件下能够形成不同的形态.同一物质可能以晶体和非晶体两种不同的形态出现,有些非晶体在一定条件下可以转化为晶体
1.(2015·高考江苏卷)对下列几种固体物质的认识,正确的有( )
A.食盐熔化过程中,温度保持不变,说明食盐是晶体
B.烧热的针尖接触涂有蜂蜡薄层的云母片背面,熔化的蜂蜡呈椭圆形,说明蜂蜡是晶体
C.天然石英表现为各向异性,是由于该物质的微粒在空间的排列不规则
D.石墨和金刚石的物理性质不同,是由于组成它们的物质微粒排列结构不同
提示:选AD.晶体才有固定的熔点,A正确.熔化的蜂蜡呈椭圆形说明云母片导热具有各向异性的特点,故此现象说明云母片是晶体,B错误.晶体具有各向异性的原因是物质微粒在空间的排列是规则的,而在不同方向上单位长度内的物质微粒数目不同,引起不同方向上性质不同,故C错误.石墨的物质微粒在空间上是片层结构,而金刚石的物质微粒在空间上是立体结构,从而引起二者在硬度、熔点等物理性质上的差异,D正确.
二、液体
1.液体的表面张力
(1)作用:液体的表面张力使液面具有收缩的趋势.
(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直.
(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.
2.液晶的物理性质
(1)具有液体的流动性.
(2)具有晶体的光学各向异性.
(3)在某个方向上看,其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.
三、饱和汽 湿度
1.饱和汽与未饱和汽
(1)饱和汽:与液体处于动态平衡的蒸汽.
(2)未饱和汽:没有达到饱和状态的蒸汽.
2.饱和汽压
(1)定义:饱和汽所具有的压强.
(2)特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关.
3.湿度
(1)绝对湿度:空气中所含水蒸气的压强.
(2)相对湿度:空气的绝对湿度与同一温度下水的饱和汽压之比.
(3)相对湿度公式
相对湿度=.
2.判断正误
(1)液体的表面张力其实质是液体表面分子间的引力.( )
(2)硬币或钢针浮于水面上不是由于液体的表面张力.( )
(3)蒸汽处于饱和状态时没有了液体分子与蒸汽分子间的交换.( )
(4)饱和汽压是指饱和汽的压强.( )
提示:(1)√ (2)× (3)× (4)√
四、气体
1.气体分子运动的特点
(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气体能充满它能达到的整个空间.
(2)分子做无规则的运动,速率有大有小,且时刻变化,大量分子的速率按“中间多,两头少”的规律分布.
(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率将增大,但速率分布规律不变.
2.气体实验三定律
玻意耳定律
查理定律
盖—吕萨克定律
条件
质量一定,
温度不变
质量一定,
体积不变
质量一定,
压强不变
表达式
p1V1=p2V2
=
=
图象
五、理想气体状态方程
1.理想气体
(1)宏观上讲,理想气体是指在任何温度、任何压强下始终遵从气体实验定律的气体.实际气体在压强不太大、温度不太低的条件下,可视为理想气体.
(2)微观上讲,理想气体的分子间除碰撞外无其他作用力,分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.
2.理想气体的状态方程
(1)内容:一定质量的某种理想气体发生状态变化时,压强跟体积的乘积与热力学温度的比值保持不变.
(2)公式:=或=C(C是与p、V、T无关的常量).
3.(2015·高考江苏卷)给某包装袋充入氮气后密封,在室温下,袋中气体压强为1个标准大气压、体积为1 L.将其缓慢压缩到压强为2个标准大气压时,气体的体积变为0.45 L.请通过计算判断该包装袋是否漏气.
提示:若不漏气,设加压后的体积为V1,由玻意耳定律知:p0V0=p1V1,代入数据得V1=0.5 L,
因为0.45 L<0.5 L,说明包装袋漏气.
答案:若不漏气,设加压后的体积为V1,由等温过程得p0V0=p1V1,代入数据得V1=0.5 L,因为0.45 L<0.5 L,故包装袋漏气
固体和液体的性质
【知识提炼】
1.晶体和非晶体
(1)单晶体具有各向异性,但不是在各种物理性质上都表现出各向异性.
(2)只要是具有各向异性的物体必定是晶体,且是单晶体.
(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.
2.液体表面张力
(1)形成原因:表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力.
(2)表面特性:表面层分子间的引力使液面产生了表面张力,
使液体表面好像一层绷紧的弹性薄膜,分子势能大于液体内部的分子势能.
(3)表面张力的方向:和液面相切,垂直于液面上的各条分界线.
(4)表面张力的效果:表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小.
(5)表面张力的大小:跟边界线的长度、液体的种类、温度都有关系.
【典题例析】
(2015·高考全国卷Ⅰ)下列说法正确的是( )
A.将一块晶体敲碎后,得到的小颗粒是非晶体
B.固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质
C.由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体
D.在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体
E.在熔化过程中,晶体要吸收热量,但温度保持不变,内能也保持不变
[审题指导] 晶体与非晶体的区别主要在于有无天然规则几何外形、有无确定熔点、物理性质为各向同性或各向异性,并且在特定条件下还可以相互转化.
[解析] 将一块晶体敲碎后,得到的小颗粒仍是晶体,故选项A错误.单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,故选项B正确.例如金刚石和石墨由同种元素构成,但由于原子的排列方式不同而成为不同的晶体,故选项C正确.晶体与非晶体在一定条件下可以相互转化.如天然水晶是晶体,熔融过的水晶(即石英玻璃)是非晶体,也有些非晶体在一定条件下可转化为晶体,故选项D正确.熔化过程中,晶体的温度不变,但内能改变,故选项E错误.
[答案] BCD
【跟进题组】
考向1 晶体、非晶体的特性
1.(高考海南卷)下列说法正确的是( )
A.液面表面张力的方向与液面垂直并指向液体内部
B.单晶体有固定的熔点,多晶体没有固定的熔点
C.单晶体中原子(或分子、离子)的排列具有空间周期性
D.通常金属在各个方向的物理性质都相同,所以金属是非晶体
E.液晶具有液体的流动性,同时具有晶体的各向异性特征
解析:选CE.液面表面张力的方向始终与液面相切,A错误.单晶体和多晶体都有固定的熔、沸点,非晶体熔点不固定,B错误.单晶体中原子(或分子、离子)的排列是规则的,具有空间周期性,表现为各向异性,C正确.金属材料虽然显示各向同性,但并不意味着就是非晶体,可能是多晶体,D错误.液晶的名称由来就是由于它具有流动性和各向异性,E正确.
考向2 液体的性质及现象
2.下列说法不正确的是( )
A.把一枚针轻放在水面上,它会浮在水面上.这是由于水表面存在表面张力的缘故
B.在处于失重状态的宇宙飞船中,一大滴水银会成球状,是因为液体内分子间有相互吸引力
C.将玻璃管道裂口放在火上烧,它的尖端就变圆,是因为熔化的玻璃在表面张力的作用下,表面要收缩到最小的缘故
D.漂浮在热菜汤表面上的油滴,从上面观察是圆形的,是因为油滴液体呈各向同性的缘故
E.当两薄玻璃板间夹有一层水膜时,在垂直于玻璃板的方向很难将玻璃板拉开.这是由于水膜具有表面张力的缘故
解析:选BDE.水的表面张力托起针,A正确;B、D两项也是表面张力原因,故B、D均错误,C项正确;在垂直于玻璃板方向很难将夹有水膜的玻璃板拉开是因为大气压的作用,E错误.
考向3 对饱和蒸汽、相对湿度的考查
3.(高考全国卷Ⅱ)下列说法正确的是( )
A.悬浮在水中的花粉的布朗运动反映了花粉分子的热运动
B.空中的小雨滴呈球形是水的表面张力作用的结果
C.彩色液晶显示器利用了液晶的光学性质具有各向异性的特点
D.高原地区水的沸点较低,这是高原地区温度较低的缘故
E.干湿泡湿度计的湿泡显示的温度低于干泡显示的温度,这是湿泡外纱布中的水蒸发吸热的结果
解析:选BCE.悬浮在水中的花粉的布朗运动反映了水分子的热运动,而不是反映花粉分子的热运动,选项A错误.由于表面张力的作用使液体表面收缩,使小雨滴呈球形,选项B正确.液晶的光学性质具有各向异性,彩色液晶显示器就利用了这一性质,选项C正确.高原地区水的沸点较低是因为高原地区的大气压强较小,水的沸点随大气压强的降低而降低,选项D错误.由于液体蒸发时吸收热量,温度降低,所以湿泡显示的温度低于干泡显示的温度,选项E正确.
气体压强的产生和计算
【知识提炼】
1.产生的原因:由于大量分子无规则地运动而碰撞器壁,形成对器壁各处均匀、持续的压力,作用在器壁单位面积上的压力叫做气体的压强.
2.决定因素
(1)宏观上:决定于气体的温度和体积.
(2)微观上:决定于分子的平均动能和分子的密集程度.
3.平衡状态下气体压强的求法
(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.
(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.
(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.
4.加速运动系统中封闭气体压强的求法:选取与气体接触的液柱(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.
【典题例析】
如图所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m的可在汽缸内无摩擦滑动的活塞,活塞面积为S.现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p.(已知外界大气压为p0)
[解析] 选取汽缸和活塞整体为研究对象,
相对静止时有:F=(M+m)a
再选活塞为研究对象,根据牛顿第二定律有:
pS-p0S=ma
解得:p=p0+.
[答案] p0+
【跟进题组】
考向1 气体压强的微观解释
1.对于一定量的稀薄气体,下列说法正确的是 ( )
A.压强变大时,分子热运动必然变得剧烈
B.保持压强不变时,分子热运动可能变得剧烈
C.压强变大时,分子间的平均距离必然变小
D.压强变小时,分子间的平均距离可能变小
解析:选BD.压强变大时,气体的温度不一定升高,分子的热运动不一定变得剧烈,故选项A错误;压强不变时,若气体的体积增大,则气体的温度会升高,
分子热运动会变得剧烈,故选项B正确; 压强变大时,由于气体温度不确定,则气体的体积可能不变,可能变大,也可能变小,其分子间的平均距离可能不变,也可能变大或变小,故选项C错误;压强变小时,气体的体积可能不变,可能变大也可能变小,所以分子间的平均距离可能不变,可能变大,可能变小.故选项D正确.
考向2 气体压强的计算
2.如图中两个汽缸的质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强各多大?
解析:求气体压强要以跟气体接触的物体为研究对象进行受力分析,在本题中,可取的研究对象有活塞和汽缸.两种情况下活塞和汽缸的受力情况的复杂程度是不同的:第一种情况下,活塞受重力、大气压力和封闭气体压力三个力作用,而且只有气体压力是未知的;汽缸受重力、大气压力、封闭气体压力和地面支持力四个力,地面支持力和气体压力都是未知的,要求地面压力还得以整体为对象才能得出.因此应选活塞为研究对象求pA.同理第二种情况下应以汽缸为研究对象求pB.得出的结论是:pA=p0+,pB=p0-.
答案:p0+ p0-
气体压强的计算应注意的问题
(1)在气体流通的区域,各处压强相等,如容器与外界相通,容器内外压强相等;用细管相连的容器,平衡时两边气体压强相等.
(2)液体内深为h处的总压强p=p0+ρgh,式中的p0为液面上方的压强,在水银内,用cmHg做单位时可表示为p=H+h.
(3)连通器内静止的液体,同种液体在同一水平面上各处压强相等.
(4)求用固体(如活塞)或液体(如液柱)封闭在静止的容器内的气体压强,应对固体或液体进行受力分析,然后根据平衡条件求解.
(5)当封闭气体所在的系统处于力学非平衡的状态时,欲求封闭气体的压强,首先选择恰当的对象(如与气体关联的液柱、活塞等),并对其进行正确的受力分析(特别注意内、外气体的压力),然后根据牛顿第二定律列方程求解.
理想气体实验定律与状态方程的应用
【知识提炼】
1.气体状态变化的图象问题
特点
示例
等温过程
p-V
pV=CT(其中C为恒量),即pV之积越大的等温线温度越高,线离原点越远
p-
p=CT,斜率k=CT,即斜率越大,温度越高
等容过程
p-T
p=T,斜率k=,即斜率越大,体积越小
等压过程
V-T
V=T,斜率k=,即斜率越大,压强越小
2.理想气体状态方程与气体实验定律的关系
=
3.几个重要的推论
(1)查理定律的推论:Δp=ΔT.
(2)盖—吕萨克定律的推论:ΔV=ΔT.
(3)理想气体状态方程的推论:=++…….
【典题例析】
(2016·高考全国卷甲)一氧气瓶的容积为0.08 m3,开始时瓶中氧气的压强为20个大气压.某实验室每天消耗1个大气压的氧气0.36 m3.当氧气瓶中的压强降低到2个大气压时,需重新充气.若氧气的温度保持不变,求这瓶氧气重新充气前可供该实验室使用多少天.
[审题指导] 解答此题的关键是将用去的氧气在p2状态下的体积转化为在p0状态下的体积,从而可计算出氧气在p0下的可用天数.
[解析] 设氧气开始时的压强为p1,体积为V1,压强变为p2(2个大气压)时,体积为V2,根据玻意耳定律得
p1V1=p2V2①
重新充气前,用去的氧气在p2压强下的体积为
V3=V2-V1②
设用去的氧气在p0(1个大气压)压强下的体积为V0,则有p2V3=p0V0③
设实验室每天用去的氧气在p0压强下的体积为ΔV,则氧气可用的天数为N=④
联立①②③④式,并代入数据得N=4(天).
[答案] 4天
【跟进题组】
考向1 玻璃管水银柱模型
1.(2016·高考全国卷丙)一U形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.用力向下缓慢推活塞,直至管内两边汞柱高度相等时为止.求此时右侧管内气体的压强和活塞向下移动的距离.已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强p0=75.0 cmHg.环境温度不变.
解析:设初始时,右管中空气柱的压强为p1,长度为l1;左管中空气柱的压强为p2=p0,长度为l2.活塞被下推h后,右管中空气柱的压强为p′1,长度为l′1;左管中空气柱的压强为p′2,长度为l′2.以cmHg为压强单位.由题给条件得p1=p0+(20.0-5.00)cmHg①
l′1=cm②
由玻意耳定律得p1l1=p′1l′1③
联立①②③式和题给条件得
p′1=144 cmHg④
依题意p′2=p′1⑤
l′2=4.00 cm+ cm-h⑥
由玻意耳定律得p2l2=p′2l′2⑦
联立④⑤⑥⑦式和题给条件得
h=9.42 cm.
答案:144 cmHg 9.42 cm
考向2 汽缸活塞模型
2.(2015·高考全国卷Ⅰ)如图,一固定的竖直汽缸由一大一小两个同轴圆筒组成,两圆筒中各有一个活塞.已知大活塞的质量为m1=2.50 kg,横截面积为S1=80.0 cm2;小活塞的质量为m2=1.50 kg,横截面积为S2=40.0 cm2;两活塞用刚性轻杆连接,间距保持为l=40.0 cm;汽缸外大气的压强为p=1.00×105 Pa,温度为T=303 K.初始时大活塞与大圆筒底部相距,两活塞间封闭气体的温度为T1=495 K.现汽缸内气体温度缓慢下降,活塞缓慢下移.忽略两活塞与汽缸壁之间的摩擦,重力加速度大小g取10 m/s2.求:
(1)在大活塞与大圆筒底部接触前的瞬间,汽缸内封闭气体的温度;
(2)缸内封闭的气体与缸外大气达到热平衡时,缸内封闭气体的压强.
解析:(1)设初始时气体体积为V1,在大活塞与大圆筒底部刚接触时,缸内封闭气体的体积为V2,温度为T2.由题给条件得
V1=S1+S2①
V2=S2l②
在活塞缓慢下移的过程中,用p1表示缸内气体的压强,由力的平衡条件得
S1(p1-p)=m1g+m2g+S2(p1-p)③
故缸内气体的压强不变.由盖-吕萨克定律有
=④
联立①②④式并代入题给数据得
T2=330 K.⑤
(2)在大活塞与大圆筒底部刚接触时,被封闭气体的压强为p1.在此后与汽缸外大气达到热平衡的过程中,被封闭气体的体积不变.设达到热平衡时被封闭气体的压强为p′,由查理定律有
=⑥
联立③⑤⑥式并代入题给数据得
p′=1.01×105 Pa.
答案:(1)330 K (2)1.01×105 Pa
考向3 气体实验定律中的图象问题
3.(2016·高考全国卷甲)一定量的理想气体从状态a开始,经历等温或等压过程ab、bc、cd、da回到原状态,其p-T图象如图所示,其中对角线ac的延长线过原点O.下列判断正确的是( )
A.气体在a、c两状态的体积相等
B.气体在状态a时的内能大于它在状态c时的内能
C.在过程cd中气体向外界放出的热量大于外界对气体做的功
D.在过程da中气体从外界吸收的热量小于气体对外界做的功
E.在过程bc中外界对气体做的功等于在过程da中气体对外界做的功
解析:选ABE.由=k可知,p-T图象中过原点的一条倾斜的直线是等容线,A项正确;气体从状态c到状态d的过程温度不变,内能不变,从状态d到状态a的过程温度升高,内能增加,B项正确;由于过程cd中气体的内能不变,根据热力学第一定律可知,气体向外放出的热量等于外界对气体做的功,C项错误;在过程da中气体内能增加,气体从外界吸收的热量大于气体对外界做的功,D项错误;过程bc中,外界对气体做的功Wbc=pb(Vb-Vc)=pbVb-pcVc,过程da中气体对外界做的功Wda=pd(Va-Vd)=paVa-pdVd,由于pbVb=paVa,pcVc=pdVd,因此过程bc中外界对气体做的功与过程da中气体对外界做的功相等,E项正确.
考向4 理想气体状态方程的应用
4.(2017·石家庄模拟)如图所示,U形管右管横截面积为左管横截面积的2倍,在左管内用水银封闭一段长为26 cm、温度为280 K的空气柱,左右两管水银面高度差为36 cm,外界大气压为76 cmHg.若给左管的封闭气体加热,使管内气柱长度为30 cm,则此时左管内气体的温度为多少?
解析:设U形管左管的横截面积为S,当左管内封闭的气柱长度变为30 cm时,左管水银柱下降4 cm,右管水银柱上升2 cm,即左右两端水银柱高度差变为h′=30 cm
对左管内封闭的气体:
p1=p0-h=40 cmHg;V1=l1S=26S;T1=280 K
p2=p0-h′=46 cmHg;V2=l′S=30S;T2=?
由理想气体状态方程得=
可得T2=T1=371.5 K.
答案:371.5 K
1.利用气体实验定律及气体状态方程解决问题的基本思路
2.气体状态变化图象的应用技巧
(1)求解气体状态变化的图象问题,应当明确图象上的点表示一定质量的理想气体的一个平衡状态,它对应着三个状态参量;图象上的某一条直线段或曲线段表示一定质量的理想气体状态变化的一个过程.
(2)在V-T图象(或p-T图象)中,比较两个状态的压强(或体积)大小,可以比较这两个状态到原点连线的斜率的大小,其规律是:斜率越大,压强(或体积)越小;斜率越小,压强(或体积)越大.
1.(2017·唐山模拟)对于一定质量的理想气体,下列论述中正确的是( )
A.若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大
B.若单位体积内分子个数不变,当分子热运动加剧时,压强可能不变
C.若气体的压强不变而温度降低时,则单位体积内分子个数一定增加
D.若气体的压强不变而温度降低时,则单位体积内分子个数可能不变
E.若气体体积减小,温度升高,单位时间内分子对器壁的撞击次数增多,平均撞击力增大,因此压强增大
解析:选ACE.气体压强的大小与气体分子的平均动能和单位体积内的分子数两个因素有关.若单位体积内分子数不变,当分子热运动加剧时,决定压强的两个因素中一个不变,一个增大,故气体的压强一定变大,A对、B错;若气体的压强不变而温度降低时,气体的体积一定减小,故单位体积内的分子个数一定增加,C对、D错;由气体压强产生原因知,E对.
2.(高考福建卷)如图为一定质量理想气体的压强p与体积V关系图象,它由状态A经等容过程到状态B,再经等压过程到状态C.设A、B、C状态对应的温度分别为TA、TB、TC,则下列关系式中正确的是( )
A.TA<TB,TB<TC B.TA>TB,TB=TC
C.TA>TB,TB<TC D.TA=TB,TB>TC
解析:选C.根据理想气体状态方程=k可知,从A到B,温度降低,故A
、D错误;从B到C,温度升高,故B错误、C正确.
3.如图所示,内壁光滑的圆柱型金属容器内有一个质量为m、面积为S的活塞.容器固定放置在倾角为θ的斜面上.一定量的气体被密封在容器内,温度为T0,活塞底面与容器底面平行,距离为h.已知大气压强为p0,重力加速度为g.容器内气体压强为多大?
解析:容器内气体的压强与大气压和活塞的重力有关.活塞对气体产生的压强为p′=,则容器内气体的压强p=p0+p′=p0+.
答案:p=p0+
4.(2016·高考全国卷乙)在水下气泡内空气的压强大于气泡表面外侧水的压强,两压强差Δp与气泡半径r之间的关系为Δp=,其中σ=0.070 N/m.现让水下10 m处一半径为0.50 cm的气泡缓慢上升.已知大气压强p0=1.0×105 Pa,水的密度ρ=1.0×103 kg/m3,重力加速度大小g=10 m/s2.
(1)求在水下10 m处气泡内外的压强差;
(2)忽略水温随水深的变化,在气泡上升到十分接近水面时,求气泡的半径与其原来半径之比的近似值.
解析:(1)当气泡在水下h=10 m处时,设其半径为r1,气泡内外压强差为Δp1,则Δp1=①
代入题给数据得Δp1=28 Pa.②
(2)设气泡在水下10 m处时,气泡内空气的压强为p1,气泡体积为V1;气泡到达水面附近时,气泡内空气的压强为p2,气泡内外压强差为Δp2,其体积为V2,半径为r2.气泡上升过程中温度不变,根据玻意耳定律有
p1V1=p2V2③
由力学平衡条件有p1=p0+ρgh+Δp1④
p2=p0+Δp2⑤
气泡体积V1和V2分别为V1=πr⑥
V2=πr⑦
联立③④⑤⑥⑦式得=⑧
由②式知,Δpi≪p0,i=1、2,故可略去⑧式中的Δpi项.代入题给数据得=≈1.3.⑨
答案:(1)28 Pa (2)1.3
5.(2015·高考海南卷)如图,一底面积为S、内壁光滑的圆柱形容器竖直放置在水平地面上,开口向上,内有两个质量均为m的相同活塞A和B;在A与B之间、B与容器底面之间分别封有一定量的同样的理想气体,平衡时体积均为V.已知容器内气体温度始终不变,重力加速度大小为g,外界大气压强为p0.现假设活塞B发生缓慢漏气,致便B最终与容器底面接触.求活塞A移动的距离.
解析:初始状态下A、B两部分气体的压强分别设为pAO、pBO,则对活塞A、B由平衡条件可得:
p0S+mg=pAOS①
pAOS+mg=pBOS②
最终状态下两部分气体融合在一起,压强设为p,体积设为V′,对活塞A由平衡条件有
p0S+mg=pS③
对两部分气体由理想气体状态方程可得
pAOV+pBOV=pV′④
设活塞A移动的距离为h,则有
V′=2V+hS⑤
联立以上各式可得
h=.
答案:
6.(2015·高考全国卷Ⅱ)如图,一粗细均匀的U形管竖直放置,A侧上端封闭,B侧上端与大气相通,下端开口处开关K关闭;A侧空气柱的长度l=10.0 cm,B侧水银面比A侧的高h=3.0 cm.现将开关K打开,从U形管中放出部分水银,当两侧水银面的高度差为h1=10.0 cm时将开关K关闭.已知大气压强p0=75.0 cmHg.
(1)求放出部分水银后A侧空气柱的长度;
(2)此后再向B侧注入水银,使A、B两侧的水银面达到同一高度,求注入的水银在管内的长度.
解析:(1)以cmHg为压强单位.设A侧空气柱长度l=10.0 cm时的压强为p;当两侧水银面的高度差为h1=10.0 cm时,空气柱的长度为l1,压强为p1.由玻意耳定律得
pl=p1l1①
由力学平衡条件得
p=p0+h②
打开开关K放出水银的过程中,B侧水银面处的压强始终为p0,而A侧水银面处的压强随空气柱长度的增加逐渐减小,B、A两侧水银面的高度差也随之减小,直至B侧水银面低于A侧水银面h1为止.由力学平衡条件有
p1=p0-h1③
联立①②③式,并代入题给数据得
l1=12.0 cm.④
(2)当A、B两侧的水银面达到同一高度时,设A侧空气柱的长度为l2,压强为p2.由玻意耳定律得
pl=p2l2⑤
由力学平衡条件有
p2=p0⑥
联立②⑤⑥式,并代入题给数据得
l2=10.4 cm⑦
设注入的水银在管内的长度为Δh,依题意得
Δh=2(l1-l2)+h1⑧
联立④⑦⑧式,并代入题给数据得
Δh=13.2 cm.
答案:(1)12.0 cm (2)13.2 cm
相关文档
- 高考第一轮复习物理七考纲解读及真2021-05-22 13:38:176页
- 高考一轮复习物理选修35专题练习动2021-05-10 21:37:1117页
- 高考第一轮复习物理22匀速直线运动2021-04-28 19:09:4212页
- 高三一轮复习物理第5章《机械能及2021-04-27 18:19:156页
- 高三一轮复习物理第9章《电磁感应2021-04-27 11:24:587页
- 高考一轮复习物理单元检测九 电磁2021-04-26 01:20:227页
- 高三一轮复习物理第9章《电磁感应2021-04-19 22:06:5311页
- 高三一轮复习物理第3章《牛顿运动2021-04-19 20:02:534页
- 高三一轮复习物理第2章《相互作用2021-04-19 18:03:473页
- 高三一轮复习物理第4章《曲线运动2021-04-17 11:37:4312页