- 813.50 KB
- 2021-05-22 发布
题型探究课 带电粒子在复合场中的运动
带电粒子在组合场中的运动[学生用书P190]
【题型解读】
1.“电偏转”和“磁偏转”的比较
垂直电场线进入匀强电场(不计重力)
垂直磁感线进入匀强磁场(不计重力)
受力
情况
电场力FE=qE,其大小、方向不变,与速度v无关,FE是恒力
洛伦兹力FB=qvB,其大小不变,方向随v而改变,FB是变力
轨迹
抛物线
圆或圆的一部分
运动
轨迹
求解
方法
利用类似平抛运动的规律求解:
vx=v0,x=v0t
vy=t,y=t2
偏转角φ:
tan φ==
半径:r=
周期:T=
偏移距离y和偏转角φ要结合圆的几何关系利用圆周运动规律讨论求解
运动
时间
t=
t=T=
动能
变化
不变
2.带电粒子在组合场中的运动,实际上是几个典型运动过程的组合,因此解决这类问题要分段处理,找出各分段之间的衔接点和相关物理量,问题即可迎刃而解.常见类型如下:
(1)从电场进入磁场
①粒子先在电场中做加速直线运动,然后进入磁场做圆周运动.在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.
②粒子先在电场中做类平抛运动,然后进入磁场做圆周运动.在电场中利用类平抛运动知识求粒子进入磁场时的速度.
(2)从磁场进入电场
①粒子进入电场时的速度与电场方向相同或相反,做匀变速直线运动(不计重力).
②粒子进入电场时的速度方向与电场方向垂直,做类平抛运动.
【典题例析】
(2017·高考天津卷)
平面直角坐标系xOy中,第Ⅰ象限存在垂直于平面向里的匀强磁场,第Ⅲ象限存在沿y轴负方向的匀强电场,如图所示.一带负电的粒子从电场中的Q点以速度v0沿x轴正方向开始运动,Q点到y轴的距离为到x轴距离的2倍.粒子从坐标原点O离开电场进入磁场,最终从x轴上的P点射出磁场,P点到y轴距离与Q点到y轴距离相等.不计粒子重力,问:
(1)粒子到达O点时速度的大小和方向;
(2)电场强度和磁感应强度的大小之比.
[解析] (1)在电场中,粒子做类平抛运动,设Q点到x轴距离为L,到y轴距离为2L,粒子的加速度为a,运动时间为t,有
2L=v0t ①
L=at2 ②
设粒子到达O点时沿y轴方向的分速度为vy
vy=at ③
设粒子到达O点时速度方向与x轴正方向夹角为α,有tan α=④
联立①②③④式得α=45° ⑤
即粒子到达O点时速度方向与x轴正方向成45°角斜向上.
设粒子到达O点时速度大小为v,由运动的合成有
v= ⑥
联立①②③⑥式得v=v0. ⑦
(2)设电场强度为E,粒子电荷量为q,质量为m,粒子在电场中受到的电场力为F,由牛顿第二定律可得F=ma ⑧
又F=qE ⑨
设磁场的磁感应强度大小为B,粒子在磁场中做匀速圆周运动的半径为R,所受的洛伦兹力提供向心力,
有qvB=m ⑩
由几何关系可知R=L ⑪
联立①②⑦⑧⑨⑩⑪式得=.
[答案] 见解析
1.(2017·高考全国卷Ⅲ)如图,空间存在方向垂直于纸面(xOy平面)向里的磁场.在x≥0区域,磁感应强度的大小为B0;x<0区域,磁感应强度的大小为λB0(常数λ>1).一质量为m、电荷量为q(q>0)的带电粒子以速度v0从坐标原点O沿x轴正向射入磁场,此时开始计时,当粒子的速度方向再次沿x轴正向时,求(不计重力)
(1)粒子运动的时间;
(2)粒子与O点间的距离.
解析:(1)在匀强磁场中,带电粒子做圆周运动.设在x≥0区域,圆周半径为R1;在x<0区域,圆周半径为R2.由洛伦兹力公式及牛顿定律得
qB0v0=m ①
qλB0v0=m ②
粒子速度方向转过180°时,所需时间t1为
t1= ③
粒子再转过180°时,所需时间t2为
t2= ④
联立①②③④式得,所求时间为
t0=t1+t2=.⑤
(2)由几何关系及①②式得,所求距离为
d0=2(R1-R2)=.
答案:见解析
带电粒子在叠加场中的运动[学生用书P191]
【题型解读】
带电粒子在叠加场中运动的分析方法
【典题例析】
如图甲所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0.一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力.
(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小;
(2)若撤去电场,如图乙所示,已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°,求磁感应强度的大小及粒子在磁场中运动的时间;
(3)在图乙中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?
[解析] (1)电场、磁场都存在时,只有电场力对带电粒子做功,由动能定理
qU=mv-mv ①
得v0= . ②
(2)由牛顿第二定律
qBv2= ③
如图1所示,由几何关系确定粒子运动轨迹的圆心O′和半径R
R2+R2=(R2-R1)2 ④
联立③④得磁感应强度大小
B= ⑤
粒子在磁场中做匀速圆周运动的周期
T= ⑥
由几何关系确定粒子在磁场中运动的时间
t= ⑦
联立④⑥⑦式,得t=. ⑧
图1 图2
(3)如图2所示,为使粒子射出,则粒子在磁场内的运动半径应大于过A点的最大内切圆半径,该半径为
Rc= ⑨
代入公式得磁感应强度应小于Bc=.
[答案] (1) (2) (3)
2.(2018·浙江省名校协作体高三联考)
如图所示,LMN是竖直平面内固定的光滑绝缘轨道,MN水平且足够长,LM下端与MN相切.在OP与QR之间的区域内有一竖直向上的匀强电场和垂直纸面向里的匀强磁场,磁感应强度为B.C、D是质量为m和4m的绝缘小物块(可视为质点),其中D带有电荷量q,C不带电.现将物块D静止放置在水平轨道的MO段,将物块C从离水平轨道MN距离h高的L处由静止释放,物块C沿轨道下滑进入水平轨道,然后与D相碰,碰后物体C被反弹滑至斜面处,物体D进入虚线OP右侧的复合场中继续运动,最后从RQ侧飞出复合场区域.求:
(1)物块D进入磁场时的瞬时速度vD的大小;
(2)若物块D进入磁场后恰好做匀速圆周运动,求所加匀强电场的电场强度E的值及物块D的电性;
(3)若物块D飞离复合场区域时速度方向与水平夹角为60°,求物块D飞出QR边界时与水平轨道的距离d.
解析:(1)对物块C,根据动能定理有mgh=mv2
反弹后mv=mg
得:v1=
碰撞时由动量守恒定律:mv=-mv1+4mvD
代入得:vD==.
(2)若物块D做匀速圆周运动,则电场力与重力相等:
4mg=Eq
得:E= 带正电.
(3)由几何关系得d=(1-cos 60°)R=
R==
得:d==.
答案:(1) (2) 带正电 (3)
带电粒子在交变场中的运动[学生用书P192]
【题型解读】
1.解决带电粒子在交变电场、磁场中的运动问题时,关键要明确粒子在不同时间段内、不同区域内的受力特性,对粒子的运动情景、运动性质做出判断.
2.这类问题一般都具有周期性,在分析粒子运动时,要注意粒子的运动周期、电场周期、磁场周期的关系.
3.带电粒子在交变电磁场中运动仍遵循牛顿运动定律、运动的合成与分解、动能定理、能量守恒定律等力学规律,所以此类问题的研究方法与质点动力学相同.
【典题例析】
(高考山东卷)如图甲所示,间距为d、垂直于纸面的两平行板P、Q间存在匀强磁场.取垂直于纸面向里为磁场的正方向,磁感应强度随时间的变化规律如图乙所示.t=0时刻,一质量为m、带电量为+q的粒子(不计重力),以初速度v0由Q板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区.当B0和TB取某些特定值时,可使t=0时刻入射的粒子经Δt时间恰能垂直打在P板上(不考虑粒子反弹).上述m、q、d、v0为已知量.
(1)若Δt=TB,求B0;
(2)若Δt=TB,求粒子在磁场中运动时加速度的大小;
(3)若B0=,为使粒子仍能垂直打在P板上,求TB.
[审题指导] (1)入射的粒子经Δt=时间恰能垂直打在P板上,粒子应运动四分之一圆弧.
(2)入射的粒子经Δt=TB时间恰能垂直打在P板上,粒子应连续运动三个四分之一圆弧.
(3)当B0=时,如何求运动周期?
[解析] (1)设粒子做圆周运动的半径为R1,洛伦兹力提供向心力,则有qv0B0=①
据题意由几何关系得R1=d ②
联立①②式得B0=. ③
(2)设粒子做圆周运动的半径为R2,加速度大小为a,由圆周运动公式得a=④
据题意由几何关系得3R2=d ⑤
联立④⑤式得a=. ⑥
(3)设粒子做圆周运动的半径为R,周期为T,由圆周运动公式得T=⑦
由牛顿第二定律得qv0B0= ⑧
由题意知B0=,代入⑧式得d=4R ⑨
粒子运动轨迹如图所示,O1、O2为圆心,O1O2连线与水平方向的夹角为θ,在每个TB内,只有A、B两个位置才有可能垂直击中P板,且要求0<θ<,由题意可知
T= ⑩
设经历完整TB的个数为n(n=0,1,2,3…)
若在A点击中P板,据题意由几何关系得
R+2(R+Rsin θ)n=d ⑪
当n=0时,无解 ⑫
当n=1时,联立⑨⑪式得
θ=(或sin θ=) ⑬
联立⑦⑨⑩⑬式得TB= ⑭
当n≥2时,不满足0<θ<90°的要求⑮
若在B点击中P板,据题意由几何关系得
R+2Rsin θ+2(R+Rsin θ)n=d ⑯
当n=0时,无解 ⑰
当n=1时,联立⑨⑯式得
θ=arcsin (或sin θ=) ⑱
联立⑦⑨⑩⑱式得
TB= ⑲
当n≥2时,不满足0<θ<90°的要求.
[答案] (1) (2)
(3)或
3.在地面附近的真空中,存在着竖直向上的匀强电场和垂直电场方向水平向里的匀强磁场,如图甲所示.磁场的磁感应强度B随时间t的变化情况如图乙所示.该区域中有一条水平直线MN,D是MN上的一点.在t=0时刻,有一个质量为m、电荷量为+q的小球(可看做质点),从M点开始沿着水平直线以速度v0做匀速直线运动,t0时刻恰好到达N点.经观测发现,小球在t=2t0至t=3t0时间内的某一时刻,又竖直向下经过直线MN上的D点,并且以后小球多次水平向右或竖直向下经过D点.求:
(1)电场强度E的大小;
(2)小球从M点开始运动到第二次经过D点所用的时间;
(3)小球运动的周期,并画出运动轨迹(只画一个周期).
解析:(1)小球从M点运动到N点时,
有qE=mg,解得E=.
(2)小球从M点到达N点所用时间t1=t0
小球从N点经过个圆周,到达P点,所以t2=t0
小球从P点运动到D点的位移x=R=
小球从P点运动到D点的时间t3==
所以时间t=t1+t2+t3=2t0+
.
(3)小球运动一个周期的轨迹如图所示.
小球的运动周期为T=8t0.
答案:(1) (2)2t0+ (3)8t0 运动轨迹见解析
[学生用书P193]
1.(2015·高考天津卷)现代 学仪器常利用电场、磁场控制带电粒子的运动.真空中存在着如图所示的多层紧密相邻的匀强电场和匀强磁场,电场与磁场的宽度均为d.电场强度为E,方向水平向右;磁感应强度为B,方向垂直纸面向里.电场、磁场的边界互相平行且与电场方向垂直.一个质量为m、电荷量为q的带正电粒子在第1层电场左侧边界某处由静止释放,粒子始终在电场、磁场中运动,不计粒子重力及运动时的电磁辐射.
(1)求粒子在第2层磁场中运动时速度v2的大小与轨迹半径r2;
(2)粒子从第n层磁场右侧边界穿出时,速度的方向与水平方向的夹角为θn,试求sin θn;
(3)若粒子恰好不能从第n层磁场右侧边界穿出,试问在其他条件不变的情况下,也进入第n层磁场,但比荷较该粒子大的粒子能否穿出该层磁场右侧边界,请简要推理说明之.
解析:(1)粒子在进入第2层磁场时,经过两次电场加速,中间穿过磁场时洛伦兹力不做功.
由动能定理,有2qEd=mv ①
由①式解得
v2=2 ②
粒子在第2层磁场中受到的洛伦兹力充当向心力,有
qv2B=m ③
由②③式解得
r2= . ④
(2)设粒子在第n层磁场中运动的速度为vn,轨迹半径为rn(各量的下标均代表粒子所在层数,下同).
nqEd=mv ⑤
qvnB=m ⑥
甲
粒子进入第n层磁场时,速度的方向与水平方向的夹角为αn,从第n层磁场右侧边界穿出时速度方向与水平方向的夹角为θn,粒子在电场中运动时,垂直于电场线方向的速度分量不变,有
vn-1sin θn-1=vnsin αn ⑦
由图甲看出
rnsin θn-rnsin αn=d ⑧
由⑥⑦⑧式得
rnsin θn-rn-1sin θn-1=d ⑨
由⑨式看出r1sin θ1,r2sin θ2,…,rnsin θn为一等差数列,公差为d,可得
rnsin θn=r1sin θ1+(n-1)d
乙
当n=1时,由图乙看出
r1sin θ1=d ⑪
由⑤⑥⑩⑪式得
sin θn=B .
(3)若粒子恰好不能从第n层磁场右侧边界穿出,则
θn=,sin θn=1
在其他条件不变的情况下,换用比荷更大的粒子,设其比荷为,假设能穿出第n层磁场右侧边界,粒子穿出时速度方向与水平方向的夹角为θ′n,由于>
则导致sin θ′n>1
说明θ′n不存在,即原假设不成立.所以比荷较该粒子大的粒子不能穿出该层磁场右侧边界.
答案:见解析
2.(2018·烟台模拟)如图所示的平面直角坐标系xOy,
在第Ⅰ、Ⅲ象限内有平行于y轴,电场强度大小相同、方向相反的匀强电场,在第Ⅳ象限内有垂直于纸面向里的匀强磁场.一质量为m,电荷量为q的带电粒子,从y轴上的M(0,d)点,以大小为v0的速度沿x轴正方向射入电场,通过电场后从x轴的N点进入第Ⅳ象限内,又经过磁场垂直y轴进入第Ⅲ象限,最终粒子从x轴上的P点离开.不计粒子所受到的重力.求:
(1)匀强电场的电场强度E和磁场的磁感应强度B的大小;
(2)粒子运动到P点的速度大小;
(3)粒子从M点运动到P点所用的时间.
解析:
(1)粒子运动轨迹如图所示.
设粒子在第Ⅰ象限内运动的时间为t1,粒子在N点时速度大小为v1,方向与x轴正方向间的夹角为θ,则:
x=v0t1=d
y=at=d
qE=ma,tan θ==
v1=
联立以上各式得:θ=,v1=2v0,E=.
粒子在第Ⅳ象限内做匀速圆周运动,由牛顿第二定律得:qv1B=m
由几何关系得:R==d
联立并代入数据解得:B=.
(2)粒子由M点到P点的过程,由动能定理得:
qEd+qE(R+Rcos θ)=mv-mv
代入(1)中所求数据解得:vP=v0.
(3)粒子在第Ⅰ象限内运动时间:t1==
粒子在第Ⅳ象限内运动周期:T==
t2=T=
粒子在第Ⅲ象限内运动时有:R+Rcos θ=at
解得:t3=
粒子从M点运动到P点的时间:
t=t1+t2+t3=.
答案:(1) (2)v0
(3)
3.
如图所示,在无限长的竖直边界NS和MT间充满匀强电场,同时该区域上、下部分分别充满方向垂直于NSTM平面向外和向内的匀强磁场,磁感应强度大小分别为B和2B,KL为上下磁场的水平分界线,在NS和MT边界上,距KL高h处分别有P、Q两点,NS和MT间距为1.8h,质量为m、带电量为+q的粒子从P点垂直于NS边界射入该区域,在两边界之间做圆周运动,重力加速度为g.
(1)求电场强度的大小和方向;
(2)要使粒子不从NS边界飞出,求粒子入射速度的最小值;
(3)若粒子能经过Q点从MT边界飞出,求粒子入射速度的所有可能值.
解析:(1)设电场强度大小为E
由题意可知mg=qE
得E=,方向竖直向上.
(2)如图甲所示,设粒子不从NS边飞出的入射速度最小值为vmin,对应的粒子在上、下区域的运动半径分别为r1和r2,圆心的连线与NS的夹角为φ.
由r=,有r1=,
r2==r1
由(r1+r2)sin φ=r2,r1+r1cos φ=h
联立各式解得vmin=(9-6).
甲 乙
(3)如图乙所示,设粒子入射速度为v,粒子在上、下方区域的运动半径分别为r1和r2,
粒子第一次通过KL时距离K点为x.
由题意有3nx=1.8h(n=1,2,3,…)
x≥,x=
得r1=,n<3.5
即n=1时,v=;n=2时,v=;n=3时,v=.
答案:(1) 方向竖直向上 (2)(9-6)
(3)
4.如图a所示,匀强磁场垂直于xOy平面,磁感应强度B1按图b所示规律变化(垂直于纸面向外为正).t=0时,一比荷为=1×105 C/kg的带正电粒子从原点沿y轴正方向射入,速度大小v=5×104 m/s,不计粒子重力.
(1)求带电粒子在匀强磁场中运动的轨道半径.
(2)求t=×10-4 s时带电粒子的坐标.
(3)保持图b中磁场不变,再加一垂直于xOy平面向外的恒定匀强磁场B2,其磁感应强度为0.3 T,在t=0时,粒子仍以原来的速度从原点射入,求粒子回到坐标原点的时刻.
解析:(1)带电粒子在匀强磁场中运动,洛伦兹力提供向力心,
qvB1=m
r=1 m.
(2)带电粒子在磁场中运动的周期,
T0==×10-4 s
在0~×10-4 s过程中,粒子运动了,圆弧对应的圆心角,θ1=
在×10-4 s ~×10-4 s过程中,粒子又运动了,圆弧对应的圆心角,θ2=
轨迹如图1所示,根据几何关系可知,
横坐标:x=2r+2rsin =(2+) m≈3.41 m
纵坐标:y=-2rcos =- m≈-1.41 m
带电粒子的坐标为(3.41 m,-1.41 m).
(3)施加B2=0.3 T的匀强磁场与原磁场叠加后,如图2所示,
①当nT≤t<nT+(n=0,1,2,…)时,
T1==×10-4 s
②当nT+≤t<(n+1)T(n=0,1,2,…)时,
T2==π×10-4 s
粒子运动轨迹如图3所示,则粒子回到原点的时刻为,t1=×10-4 s
t2=2(n+1)π×10-4 s(n=0,1,2,3,…).
答案:(1)1 m (2)(3.41 m,-1.41 m)
(3)t1=×10-4 s
t2=2(n+1)π×10-4 s(n=0,1,2,3,…)
相关文档
- 高考第一轮复习物理七考纲解读及真2021-05-22 13:38:176页
- 高考一轮复习物理选修35专题练习动2021-05-10 21:37:1117页
- 高考第一轮复习物理22匀速直线运动2021-04-28 19:09:4212页
- 高三一轮复习物理第5章《机械能及2021-04-27 18:19:156页
- 高三一轮复习物理第9章《电磁感应2021-04-27 11:24:587页
- 高考一轮复习物理单元检测九 电磁2021-04-26 01:20:227页
- 高三一轮复习物理第9章《电磁感应2021-04-19 22:06:5311页
- 高三一轮复习物理第3章《牛顿运动2021-04-19 20:02:534页
- 高三一轮复习物理第2章《相互作用2021-04-19 18:03:473页
- 高三一轮复习物理第4章《曲线运动2021-04-17 11:37:4312页