- 224.00 KB
- 2021-05-22 发布
第章 概 率
第一节 随机事件的概率
[考纲传真] (教师用书独具)1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义及频率与概率的区别.2.了解两个互斥事件的概率加法公式.
(对应学生用书第146页)
[基础知识填充]
1.事件的相关概念
2.频数、频率和概率
(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=为事件A出现的频率.
(2)概率:对于给定的随机事件A,在相同条件下,随着试验次数的增加,事件A发生的频率会在某个常数附近摆动并趋于稳定,我们可以用这个常数来刻画随机事件A发生的可能性大小,并把这个常数称为随机事件A的概率,记作P(A).
3.事件的关系与运算
定义
符号表示
包含关系
若事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B)
B⊇A
(或A⊆B)
相等关系
若B⊇A,且A⊇B,那么称事件A与事件B相等
A=B
并事件
(和事件)
若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A与事件B的并事件(或和事件)
A∪B
(或A+B)
交事件
(积事件)
若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件)
A∩B
(或AB)
互斥事件
若A∩B为不可能事件,那么称事件A与事件B互斥
A∩B=∅
对立事件
若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件
A∩B=∅
且A∪B=Ω
4. 概率的几个基本性质
(1)概率的取值范围:0≤P(A)≤1.
(2)必然事件的概率P(E)=1.
(3)不可能事件的概率P(F)=0.
(4)互斥事件概率的加法公式.
①如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B);
②若事件B与事件A互为对立事件,则P(A)=1-P(B).
[知识拓展]
1.必然事件的概率为1,但概率为1的事件不一定是必然事件.
2.不可能事件的概率为0,但概率为0的事件不一定是不可能事件.
[基本能力自测]
1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)
(1)事件发生的频率与概率是相同的.( )
(2)在大量的重复实验中,概率是频率的稳定值.( )
(3)对立事件一定是互斥事件,互斥事件不一定是对立事件.( )
(4)6张奖券中只有一张有奖,甲、乙先后各抽取一张,则甲中奖的概率小于乙中奖的概率.( )
[答案] (1)× (2)√ (3)√ (4)×
2.(教材改编)袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③
至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.
在上述事件中,是对立事件的为( )
A.① B.②
C.③ D.④
B [至少有1个白球和全是黑球不同时发生,且一定有一个发生,∴②中两事件是对立事件.]
3.(2016·天津高考)甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )
A. B.
C. D.
A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.]
4.(2018·天津模拟)经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:
排队人数
0
1
2
3
4
≥5
概率
0.1
0.16
0.3
0.3
0.1
0.04
则该营业窗口上午9点钟时,至少有2人排队的概率是________.
0.74 [由表格可得至少有2人排队的概率P=1-0.1-0.16=0.74.]
5.一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是________.(填序号) 【导学号:79170346】
①至多有一次中靶;②两次都中靶;③只有一次中靶;④两次都不中靶.
④
(对应学生用书第147页)
随机事件间的关系
(2018·深圳模拟)从1,2,3,4,5这五个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是( )
A.① B.②④
C.③ D.①③
C [从1,2,3,4,5这五个数中任取两个数有3种情况:一奇一偶,两个奇数,两个偶数,其中“至少有一个是奇数”包含一奇一偶或两个奇数这两种情况,它与两个都是偶数是对立事件.
又①②④中的事件可以同时发生,不是对立事件.]
[规律方法] 1.本题中准确理解恰有两个奇数(偶数),一奇一偶,至少有一个奇数(偶数)是求解的关键,必要时可把所有试验结果写出来,看所求事件包含哪些试验结果,从而断定所给事件的关系.
2.准确把握互斥事件与对立事件的概念.
(1)互斥事件是不可能同时发生的事件,但可以同时不发生.
(2)对立事件是特殊的互斥事件,特殊在对立的两个事件有且仅有一个发生.
[变式训练1] 口袋里装有1红,2白,3黄共6个形状相同的小球,从中取出2球,事件A=“取出的2球同色”,B=“取出的2球中至少有1个黄球”,C=“取出的2球至少有1个白球”,D=“取出的2球不同色”,E=“取出的2球中至多有1个白球”.下列判断中正确的序号为________.
①A与D为对立事件;②B与C是互斥事件;③C与E是对立事件;④P(C∪E)=1;⑤P(B)=P(C).
①④ [当取出的2个球中一黄一白时,B与C都发生,②不正确.当取出的2个球中恰有一个白球时,事件C与E都发生,则③不正确.显然A与D是对立事件,①正确;C∪E为必然事件,④正确.由于P(B)=,P(C)=,所以⑤不正确.]
随机事件的频率与概率
(2017·全国卷Ⅲ)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃
)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
以最高气温位于各区间的频率估计最高气温位于该区间的概率.
(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;
(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.
[解] (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6. 3分
(2)当这种酸奶一天的进货量为450瓶时,
若最高气温不低于25,则Y=6×450-4×450=900; 5分
若最高气温位于区间[20,25),则Y=6×300+2(450-300)-4×450=300;
7分
若最高气温低于20,则Y=6×200+2(450-200)-4×450=-100, 9分
所以,Y的所有可能值为900,300,-100. 10分
Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为=0.8,因此Y大于零的概率的估计值为0.8. 12分
[规律方法] 1.解题的关键是根据统计图表分析满足条件的事件发生的频数,计算频率,用频率估计概率.
2.频率反映了一个随机事件出现的频繁程度,频率是随机的,而概率是一个确定的值,通常用概率来反映随机事件发生的可能性的大小,通过大量的重复试验,事件发生的频率会逐渐趋近于某一个常数(概率),因此有时也用频率来作为随机事件概率的估计值.
[变式训练2] (2016·全国卷Ⅱ)某险种的基本保费为a
(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:
【导学号:79170347】
上年度出险次数
0
1
2
3
4
≥5
保 费
0.85a
a
1.25a
1.5a
1.75a
2a
随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:
出险次数
0
1
2
3
4
≥5
频数
60
50
30
30
20
10
(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;
(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;
(3)求续保人本年度平均保费的估计值.
[解] (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55. 4分
(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.
8分
(3)由所给数据得
保费
0.85a
a
1.25a
1.5a
1.75a
2a
频率
0.30
0.25
0.15
0.15
0.10
0.05
10分
调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.192 5A.
因此,续保人本年度平均保费的估计值为1.192 5A. 12分
互斥事件与对立事件的概率
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.
一次购物量
1至4件
5至8件
9至12件
13至16件
17件及以上
顾客数(人)
x
30
25
y
10
结算时间
(分钟/人)
1
1.5
2
2.5
3
已知这100位顾客中一次购物量超过8件的顾客占55%.
(1)确定x,y的值,并估计顾客一次购物的结算时间的平均值;
(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率).
[解] (1)由题意,得
解得x=15,且y=20. 2分
该超市所有顾客一次性购物的结算时间组成一个总体,100位顾客一次购物的结算时间视为总体的一个容量为100的简单随机抽样,顾客一次购物的结算时间的平均值可用样本平均数估计.
又==1.9,
∴估计顾客一次购物的结算时间的平均值为1.9分钟. 5分
(2)设B,C分别表示事件“一位顾客一次购物的结算时间分别为2.5分钟、3分钟”.设A表示事件“一位顾客一次购物的结算时间不超过2分钟的概率.” 7分
将频率视为概率,得
P(B)==,P(C)==.
∵B,C互斥,且=B+C,
∴P()=P(B+C)=P(B)+P(C)=+=, 10分
因此P(A)=1-P()=1-=,
∴一位顾客一次购物结算时间不超过2分钟的概率为0.7. 12分
[规律方法]
1.(1)求解本题的关键是正确判断各事件的关系,以及把所求事件用已知概率的事件表示出来.
(2)结算时间不超过2分钟的事件,包括结算时间为2分钟的情形,否则会计算错误.
2.求复杂的互斥事件的概率一般有两种方法:一是直接求解法,将所求事件的概率分解为一些彼此互斥的事件的概率再求和;二是间接法,先求该事件的对立事件的概率,再由P(A)=1-P()求解.当题目涉及“至多”“至少”型问题,多考虑间接法.
[变式训练3] 某商场有奖销售中,购满100元商品得1张奖券,多购多得.1 000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:
(1)P(A),P(B),P(C);
(2)1张奖券的中奖概率;
(3)1张奖券不中特等奖且不中一等奖的概率.
[解] (1)P(A)=,P(B)==, 2分
P(C)==.
故事件A,B,C的概率分别为,,. 5分
(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.
∵A,B,C两两互斥,
∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)
==, 8分
故1张奖券的中奖概率约为.
(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,
∴P(N)=1-P(A∪B)=1-=,
故1张奖券不中特等奖且不中一等奖的概率为. 12分