- 456.00 KB
- 2021-04-27 发布
专题七 带电粒子在复合场中运动
【专题解读】
一、复合场与组合场
1.复合场:电场、磁场、重力场共存,或其中某两场共存.
2.组合场:电场与磁场各位于一定的区域内,并不重叠或在同一区域,电场、磁场交替出现.
二、带电粒子在复合场中的运动分类
1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.
2.匀速圆周运动
当带电粒子所受的重力与电场力大小相等、方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.
3.非匀变速曲线运动
当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上时,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是拋物线.
4.分阶段运动
带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运动过程由几种不同的运动阶段组成.
1.判断正误
(1)带电粒子在复合场中的运动一定要考虑重力.(×)
(2)带电粒子在复合场中不可能处于静止状态.(×)
(3)带电粒子在复合场中不可能做匀速圆周运动.(×)
(4)带电粒子在复合场中做匀变速直线运动时,一定不受洛伦兹力作用.(√)
(5)带电粒子在复合场中做圆周运动时,一定是重力和电场力平衡,洛伦兹力提供向心力.(√)
(6)带电粒子在复合场中运动涉及功能关系时,洛伦兹力可能做功.(×)
2.(多选)如图所示,两虚线之间的空间内存在着正交或平行的匀强电场E和匀强磁场B,有一个带正电的小球(电荷量为+q、质量为m)从电、磁复合场上方的某一高度处自由落下,那么,带电小球可能沿直线通过电、磁复合场的是( )
【答案】CD.
【解析】A图中小球受重力、向左的电场力、向右的洛伦兹力,下降过程中速度一定变大,故洛伦兹力一定增大,不可能一直与电场力平衡,故合力不可能一直向下,故一定做曲线运动,故A错误.B图中小球受重力、向上的电场力、垂直纸面向外的洛伦兹力,合力与速度方向一定不共线,故一定做曲线运动,故B错误.C图中小球受重力、向左上方的电场力、水平向右的洛伦兹力,若三力平衡,则小球做匀速直线运动,故C正确.D图中小球受向下的重力和向上的电场力,合力一定与速度共线,故小球一定做直线运动,故D正确.
3.(多选)在空间某一区域里,有竖直向下的匀强电场E和垂直纸面向里的匀强磁场B,且两者正交.有两个带电油滴,都能在竖直平面内做匀速圆周运动,如右图所示,则两油滴一定相同的是( )
A.带电性质 B.运动周期
C.运动半径 D.运动速率
【答案】AB.
4.(2017·湖北襄阳调研)如图所示,两导体板水平放置,两板间电势差为U,带电粒子以某一初速度v0沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U和v0的变化情况为( )
A.d随v0增大而增大,d与U无关
B.d随v0增大而增大,d随U增大而增大
C.d随U增大而增大,d与v0无关
D.d随v0增大而增大,d随U增大而减小
【答案】A.
【解析】设粒子从M点进入磁场时的速度大小为v,该速度与水平方向的夹角为θ,故有v=
.粒子在磁场中做匀速圆周运动半径为r=.而MN之间的距离为d=2rcos θ.联立解得d=2,故选项A正确.
考向一 带电粒子在组合场中的运动
1.是否考虑粒子重力的三种情况
(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些宏观物体,如带电小球、液滴、金属块等一般应当考虑其重力.
(2)在题目中有明确说明是否要考虑重力的,这种情况比较正规,也比较简单.
(3)不能直接判断是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否要考虑重力.
2.“电偏转”与“磁偏转”的比较
垂直电场线进入匀强电场(不计重力)
垂直磁感线进入匀强磁场(不计重力)
受力情况
电场力FE=qE,其大小、方向不变,与速度v无关,FE是恒力
洛伦兹力FB=qvB,其大小不变,方向随v而改变,FB是变力
轨迹
抛物线
圆或圆的一部分
运动轨迹
求解方法
利用类似平抛运动的规律求解:
vx=v0,x=v0t
vy=·t,
y=··t2
偏转角φ:
tan φ==
半径:r=
周期:T=
偏移距离y和偏转角φ要结合圆的几何关系利用圆周运动规律讨论求解
运动时间
t=
t=T=
动能
变化
不变
命题角度1:先电场后磁场
对于粒子从电场进入磁场的运动,常见的有两种情况:
(1)先在电场中做加速直线运动,然后进入磁场做圆周运动.(如图甲、乙所示)
在电场中利用动能定理或运动学公式求粒子刚进入磁场时的速度.
(2)先在电场中做类平抛运动,然后进入磁场做圆周运动.(如图丙、丁所示)
在电场中利用平抛运动知识求粒子进入磁场时的速度.
【例1】 (多选)在半导体离子注入工艺中,初速度可忽略的磷离子P+和P3+,经电压为U的电场加速后,垂直进入磁感应强度大小为B、方向垂直纸面向里、有一定宽度的匀强磁场区域,如图所示.已知离子P+在磁场中转过θ=30°后从磁场右边界射出.在电场和磁场中运动时,离子P+和P3+( )
A.在电场中的加速度之比为1∶1
B.在磁场中运动的半径之比为∶1
C.在磁场中转过的角度之比为1∶2
D.离开电场区域时的动能之比为1∶3
【答案】BCD
【例2】如图所示,坐标平面第Ⅰ象限内存在大小为E=4×105 N/C、方向水平向左的匀强电场,在第Ⅱ象限内存在方向垂直纸面向里的匀强磁场.质量与电荷量之比为=4×10-10 kg/C的带正电粒子从x轴上的A点以初速度v0=2×107 m/s垂直x轴射入电场,OA=0.2 m,不计重力.求:
(1)粒子经过y轴时的位置到原点O的距离;
(2)若要求粒子不能进入第Ⅲ象限,求磁感应强度B的取值范围(不考虑粒子第二次进入电场后的运动情况).
【答案】(1)0.4 m (2)B≥(2+2)×10-2T
命题角度2:先磁场后电场
对于粒子从磁场进入电场的运动,常见的有两种情况:
(1)进入电场时粒子速度方向与电场方向相同或相反.
(2)进入电场时粒子速度方向与电场方向垂直.(如图甲、乙所示)
【例3】 如图,在x轴上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外;在x轴下方存在匀强电场,电场方向与xOy平面平行,且与x轴成45°夹角.一质量为m、电荷量为q(q>0)的粒子以速度v0从y轴上P点沿y轴正方向射出,一段时间后进入电场,进入电场时的速度方向与电场方向相反;又经过一段时间T0
,磁场方向变为垂直于纸面向里,大小不变,不计重力.
(1)求粒子从P点出发至第一次到达x轴时所需的时间;
(2)若要使粒子能够回到P点,求电场强度的最大值.
【答案】(1) (2)
qE=ma⑤
v0=at2⑥
联立⑤⑥式得
t2=⑦
根据题意,要使粒子能够回到P点,必须满足
t2≥T0⑧
联立⑦⑧式得,电场强度的最大值为
E=⑨
【例4】如图所示,一个质量为m、电荷量为q的正离子,在D处沿图示方向以一定的速度射入磁感应强度为B的匀强磁场中,磁场方向垂直纸面向里.结果离子正好从距A点为d的小孔C沿垂直于电场方向进入匀强电场,此电场方向与AC平行且向上,最后离子打在G处,而G处距A点2d(AG⊥AC).不计离子重力,离子运动轨迹在纸面内.求:
(1)此离子在磁场中做圆周运动的半径r;
(2)离子从D处运动到G处所需时间;
(3)离子到达G处时的动能.
【答案】(1)d (2) (3)
方法总结
带电粒子在组合场中的运动问题的分析方法
考向二 带电粒子在叠加场中的运动
1.带电粒子在叠加场中无约束情况下的运动情况分类
(1)磁场力、重力并存
①若重力和洛伦兹力平衡,则带电体做匀速直线运动.
②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.
(2)电场力、磁场力并存(不计重力的微观粒子)
①若电场力和洛伦兹力平衡,则带电体做匀速直线运动.
②若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.
(3)电场力、磁场力、重力并存
①若三力平衡,一定做匀速直线运动.
②若重力与电场力平衡,一定做匀速圆周运动.
③若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.
2.带电粒子在叠加场中有约束情况下的运动
带电体在复合场中受轻杆、轻绳、圆环、轨道等约束的情况下,常见的运动形式有直线运动和圆周运动,此时解题要通过受力分析明确变力、恒力做功情况,并注意洛伦兹力不做功的特点,运用动能定理、能量守恒定律结合牛顿运动定律求出结果.
阶梯练习
1. (多选)如图所示,空间存在水平向左的匀强电场E和垂直纸面向外的匀强磁场B,在竖直平面内从a点沿ab、ac方向抛出两带电小球,不考虑两带电小球间的相互作用,两小球所带电荷量始终不变,关于小球的运动,下列说法正确的是( )
A.沿ab、ac方向抛出的带电小球都可能做直线运动
B.若沿ab运动小球做直线运动,则该小球带正电,且一定是匀速运动
C.若沿ac运动小球做直线运动,则该小球带负电,可能做匀加速运动
D.两小球在运动过程中机械能均保持不变
【答案】AB.
2.(2017·安徽淮北模拟)如图,空间区域Ⅰ、Ⅱ有匀强电场和匀强磁场,MN、PQ为理想边界,Ⅰ区域高度为d,Ⅱ区域的范围足够大.匀强电场方向竖直向上;Ⅰ、Ⅱ区域的磁感应强度大小均为B,方向分别垂直纸面向里和向外.一个质量为m、带电荷量为q的带电小球从磁场上方的O点由静止开始下落,进入场区后,恰能做匀速圆周运动.已知重力加速度为g.
(1)试判断小球的电性并求出电场强度E的大小;
(2)若带电小球能进入区域Ⅱ,则h应满足什么条件?
(3)若带电小球运动一定时间后恰能回到O点,求它释放时距MN的高度h.
【答案】(1)正电 (2)h> (3)
【解析】(1)带电小球进入复合场后,恰能做匀速圆周运动,即所受合力为洛伦兹力,则重力与电场力大小相等,方向相反,重力竖直向下,电场力竖直向上,即小球带正电.则有qE=mg,解得E=.
相关文档
- 高三一轮复习物理第9章《电磁感应2021-04-27 11:24:587页
- 高考一轮复习物理单元检测九 电磁2021-04-26 01:20:227页
- 高三一轮复习物理第9章《电磁感应2021-04-19 22:06:5311页
- 高三一轮复习物理第3章《牛顿运动2021-04-19 20:02:534页
- 高三一轮复习物理第2章《相互作用2021-04-19 18:03:473页
- 高三一轮复习物理第4章《曲线运动2021-04-17 11:37:4312页
- 高三一轮复习物理第2章《相互作用2021-04-14 23:30:063页
- 高三一轮复习物理第3章《牛顿运动2021-04-14 21:41:495页
- 高考第一轮复习物理电场2021-04-14 01:51:4419页
- 高三一轮复习物理第4章《曲线运动2021-02-26 21:56:064页