- 137.50 KB
- 2021-04-23 发布
[基础达标]
1.函数y=x2cos x在x=1处的导数是( )
A.0 B.2cos 1-sin 1
C.cos 1-sin 1 D.1
解析:选B.因为y′=(x2cos x)′=(x2)′cos x+x2·(cos x)′=2xcos x-x2sin x,所以y′|x=1=2cos 1-sin 1.
2.(2019·衢州高三月考)已知t为实数,f(x)=(x2-4)(x-t)且f′(-1)=0,则t等于( )
A.0 B.-1
C. D.2
解析:选C.依题意得,f′(x)=2x(x-t)+(x2-4)=3x2-2tx-4,所以f′(-1)=3+2t-4=0,即t=.
3.(2019·温州模拟)已知函数f(x)=x2+2x的图象在点A(x1,f(x1))与点B(x2,f(x2))(x1<x2<0)处的切线互相垂直,则x2-x1的最小值为( )
A. B.1
C. D.2
解析:选B.因为x1<x2<0,f(x)=x2+2x,
所以f′(x)=2x+2,
所以函数f(x)在点A,B处的切线的斜率分别为f′(x1),f′(x2),
因为函数f(x)的图象在点A,B处的切线互相垂直,
所以f′(x1)f′(x2)=-1.
所以(2x1+2)(2x2+2)=-1,
所以2x1+2<0,2x2+2>0,
所以x2-x1=[-(2x1+2)+(2x2+2)]≥=1,当且仅当-(2x1+2)=2x2+2=1,
即x1=-,x2=-时等号成立.
所以x2-x1的最小值为1.故选B.
4.已知f(x)=ax4+bcos x+7x-2.若f′(2 018)=6,则f′(-2 018)=( )
A.-6 B.-8
C.6 D.8
解析:选D.因为f′(x)=4ax3-bsin x+7.
所以f′(-x)=4a(-x)3-bsin(-x)+7
=-4ax3+bsin x+7.
所以f′(x)+f′(-x)=14.
又f′(2 018)=6,
所以f′(-2 018)=14-6=8,故选D.
5. 如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x
)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=( )
A.-1 B.0
C.2 D.4
解析:选B.由题图可得曲线y=f(x)在x=3处切线的斜率等于-,即f′(3)=-.又因为g(x)=xf(x),所以g′(x)=f(x)+xf′(x),g′(3)=f(3)+3f′(3),由图可知f(3)=1,所以g′(3)=1+3×=0.
6.若点P是曲线y=x2-ln x上任意一点,则点P到直线y=x-2距离的最小值为( )
A.1 B.
C. D.
解析:选B.因为定义域为(0,+∞),令y′=2x-=1,解得x=1,则在P(1,1)处的切线方程为x-y=0,所以两平行线间的距离为d==.
7.已知f(x)=,g(x)=(1+sin x)2,若F(x)=f(x)+g(x),则F(x)的导函数为________.
解析:因为f′(x)=
==
g′(x)=2(1+sin x)(1+sin x)′=2cos x+sin 2x,
所以F′(x)=f′(x)+g′(x)=+2cos x+sin 2x.
答案:+2cos x+sin 2x
8.(2019·绍兴市柯桥区高三模拟)已知曲线y=x2-3ln x的一条切线的斜率为-,则切点的横坐标为________.
解析:设切点为(m,n)(m>0),y=x2-3ln x的导数为y′=x-,可得切线的斜率为m-=-,解方程可得,m=2.
答案:2
9.(2019·浙江金华十校高考模拟)函数f(x)的定义域为R,f(-2)=2 018,若对任意的x∈R,都有f′(x)<2x成立,则不等式f(x)<x2+2 014的解集为________.
解析:构造函数g(x)=f(x)-x2-2 014,则g′(x)=f′(x)-2x<0,所以函数g(x)在定义域上为减函数,且g(-2)=f(-2)-22-2 014=2 018-4-2 014=0,由f(x)<x2+2 014有f(x)-x2-2 014<0,即g(x)<0=g(-2),所以x>-2,不等式f(x)<x2+2 014的解集为(-2,+∞).
答案:(-2,+∞)
10.如图,已知y=f(x)是可导函数,直线l是曲线y=f(x)在x=4处的切线,令g(x)=,则g′(4)=________.
解析:g′(x)=′=.
由已知图象可知,直线l经过点P(0,3)和Q(4,5),
故k1==.
由导数的几何意义可得f′(4)=,
因为Q(4,5)在曲线y=f(x)上,故f(4)=5.
故g′(4)===-.
答案:-
11.已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(2,-6)处的切线的方程;
(2)如果曲线y=f(x)的某一切线与直线y=-x+3垂直,求切点坐标与切线的方程.
解:(1)可判定点(2,-6)在曲线y=f(x)上.
因为f′(x)=(x3+x-16)′=3x2+1.
所以f(x)在点(2,-6)处的切线的斜率为k=f′(2)=13.
所以切线的方程为y=13(x-2)+(-6),
即y=13x-32.
(2)因为切线与直线y=-x+3垂直,
所以切线的斜率k=4.
设切点的坐标为(x0,y0),
则f′(x0)=3x+1=4,所以x0=±1.
所以或
即切点坐标为(1,-14)或(-1,-18),
切线方程为y=4(x-1)-14或y=4(x+1)-18.
即y=4x-18或y=4x-14.
12.已知函数f(x)=ax+(x≠0)在x=2处的切线方程为3x-4y+4=0.
(1)求a,b的值;
(2)求证:曲线上任一点P处的切线l与直线l1:y=x,直线l2:x=0围成的三角形的面积为定值.
解:(1)由f(x)=ax+,得f′(x)=a-(x≠0).
由题意得
即解得a=1,b=1.
(2)证明:由(1)知f(x)=x+,
设曲线的切点为P,f′(x0)=1-,
曲线在P处的切线方程为
y-=(x-x0).
即y=x+.当x=0时,y=.
即切线l与l2:x=0的交点坐标为A.
由得
即l与l1:y=x的交点坐标为B(2x0,2x0).
又l1与l2的交点为O(0,0),则所求的三角形的面积为S=·|2x0|·=2.
即切线l与l1,l2围成的三角形的面积为定值.
[能力提升]
1.若曲线y=f(x)=ln x+ax2(a为常数)不存在斜率为负数的切线,则实数a的取值范围是( )
A. B.[-,+∞)
C.(0,+∞) D.[0,+∞)
解析:选D.f′(x)=+2ax=(x>0),根据题意有f′(x)≥0(x>0)恒成立,所以2ax2+1≥0(x>0)恒成立,即2a≥-(x>0)恒成立,所以a≥0,故实数a的取值范围为[0,+∞).故选D.
2.(2019·金华十校联考)已知函数y=x2的图象在点(x0,x)处的切线为l,若l也与函数y=ln x,x∈(0,1)的图象相切,则x0必满足( )
A.0<x0< B.<x0<1
C.<x0< D.<x0<
解析:选D.令f(x)=x2,f′(x)=2x,f(x0)=x,所以直线l的方程为y=2x0(x-x0)+x=2x0x-x,因为l也与函数y=ln x(x∈(0,1))的图象相切,令切点坐标为(x1,ln x1),y′=,所以l的方程为y=x+ln x1-1,这样有所以1+ln(2x0)=x,x0∈(1,+∞),令g(x)=x2-ln(2x)-1,x∈(1,+∞),所以该函数的零点就是x0,又因为g′(x)=2x-=,所以g(x)在(1,+∞)上单调递增,又g(1)=-ln 2<0,g()=1-ln 2<0,g()=2-ln 2>0,从而<x0<,选D.
3.(2019·浙江省宁波四中高三月考)给出定义:若函数f(x)在D上可导,即f′(x)存在,且导函数f′(x)在D上也可导,则称f(x)在D上存在二阶导函数,记f″ (x)=(f′(x))′.若f″(x)<0在D上恒成立,则称f(x)在D上为凸函数.以下四个函数在上是凸函数的是________(把你认为正确的序号都填上).
①f(x)=sin x+cos x;②f(x)=ln x-2x;
③f(x)=-x3+2x-1;④f(x)=xex.
解析:①中,f′(x)=cos x-sin x,f″(x)=-sin x-cos x=-sin<0在区间上恒成立;②中,f′(x)=-2(x>0),f″(x)=-<0在区间上恒成立;③中,f′(x)=-3x2+2,f″(x)=-6x在区间上恒小于0.④中,f′(x)=ex+xex,f″(x)=2ex+xex=ex(x+2)>0在区间上恒成立,故④中函数不是凸函数.故①②③为凸函数.
答案:①②③
4.(2019·浙江省十校联合体期末检测)已知函数f(x)=aex+x2,g(x)=cos πx+bx,直线l与曲线y=f(x)切于点(0,f(0)),且与曲线y=g(x)切于点(1,g(1)),则a+b=________,直线l的方程为________.
解析:f′(x)=aex+2x,g′(x)=-πsin πx+b,
f(0)=a,g(1)=cos π+b=b-1,
f′(0)=a,g′(1)=b,
由题意可得f′(0)=g′(1),则a=b,
又f′(0)==a,
即a=b=-1,则a+b=-2;
所以直线l的方程为x+y+1=0.
答案:-2 x+y+1=0
5.设有抛物线C:y=-x2+x-4,过原点O作C的切线y=kx,使切点P在第一象限.
(1)求k的值;
(2)过点P作切线的垂线,求它与抛物线的另一个交点Q的坐标.
解:(1)由题意得,y′=-2x+.设点P的坐标为(x1,y1),则y1=kx1, ①
y1=-x+x1-4, ②
-2x1+=k, ③
联立①②③得,x1=2,x2=-2(舍去).所以k=.
(2)过P点作切线的垂线,其方程为y=-2x+5. ④
将④代入抛物线方程得,x2-x+9=0.
设Q点的坐标为(x2,y2),则2x2=9,
所以x2=,y2=-4.
所以Q点的坐标为.
6.(2019·绍兴一中月考)已知函数f(x)=ax3+3x2-6ax-11,g(x)=3x2+6x+12和直线m:y=kx+9,且f′(-1)=0.
(1)求a的值;
(2)是否存在k,使直线m既是曲线y=f(x)的切线,又是曲线y=g(x)的切线?如果存在,求出k的值;如果不存在,请说明理由.
解:(1)由已知得f′(x)=3ax2+6x-6a,
因为f′(-1)=0,
所以3a-6-6a=0,所以a=-2.
(2)存在.由已知得,直线m恒过定点(0,9),若直线m是曲线y=g(x)的切线,则设切点为(x0,3x+6x0+12).
因为g′(x0)=6x0+6,
所以切线方程为y-(3x+6x0+12)=(6x0+6)(x-x0),
将(0,9)代入切线方程,解得x0=±1.
当x0=-1时,切线方程为y=9;
当x0=1时,切线方程为y=12x+9.
由(1)知f(x)=-2x3+3x2+12x-11,
①由f′(x)=0得-6x2+6x+12=0,
解得x=-1或x=2.
在x=-1处,y=f(x)的切线方程为y=-18;
在x=2处,y=f(x)的切线方程为y=9,
所以y=f(x)与y=g(x)的公切线是y=9.
②由f′(x)=12得-6x2+6x+12=12,
解得x=0或x=1.
在x=0处,y=f(x)的切线方程为y=12x-11;
在x=1处,y=f(x)的切线方程为y=12x-10,
所以y=f(x)与y=g(x)的公切线不是y=12x+9.
综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.
相关文档
- 2020届一轮复习人教A版高考政治人2021-04-23 10:59:3013页
- 2019版地理浙江选考大二轮复习作业2021-04-23 03:27:385页
- 2020秋八年级数学上册第二章《实数2021-04-22 18:53:3921页
- 2020届一轮复习人教A版高考政治人2021-04-22 18:45:0721页
- 2020届一轮复习人教A版高考政治人2021-04-22 17:59:1213页
- 高考调研高考语文二轮复习作业122021-04-21 17:09:005页
- 2020届一轮复习人教A版高考政治人2021-04-21 01:30:2211页
- 2015高考生物人教版总复习作业必修2021-04-20 23:00:149页
- 2020届一轮复习人教A版高考政治人2021-04-20 17:46:1823页
- 八年级数学上册第十四章整式的乘法2021-04-20 15:10:1029页