- 1.09 MB
- 2023-11-30 发布
2011年数学人教版湖南卷
一、选择题
1、(湖南文7)曲线在点处的切线的斜率为( )
A. B. C. D.
2、(湖南文8)已知函数若有则的取值范围为
A. B. C. D.
3、(湖南理6)由直线与曲线所围成的封闭图形的面积为( )
A. B.1 C. D.
4、(湖南理8)设直线与函数的图像分别交于点,则当达到最小时的值为( )
A.1 B. C. D.
5、(湖南理2)设集合则 “”是“”的
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分又不必要条件
二、填空题
6、(湖南文12)已知为奇函数, .
三、解答题
7、(湖南文22)设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.
8、(湖南理20)如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。
(Ⅰ)写出的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。
9、(湖南理22) 已知函数() =,g ()=+。
(Ⅰ)求函数h ()=()-g ()的零点个数,并说明理由;
(Ⅱ)设数列满足,,证明:存在常数M,使得对于任意的,都有≤ .
四、选择题
10、湖南文6.设双曲线的渐近线方程为则的值为( )
A.4 B.3 C.2 D.1
五、填空题
11、已知圆直线
(1)圆的圆心到直线的距离为 .
(2) 圆上任意一点到直线的距离小于2的概率为 .
12、湖南理9.在直角坐标系中,曲线C1的参数方程为(为参数)在极坐标系(与直角坐标系取相同的长度单位,且以原点O为极点,以轴正半轴为极轴)中,曲线的方程为,则与的交点个数为 。
13、在直角坐标系中,曲线的参数方程为.在极坐标系(与直角坐标系取相同的长度单位,且以原点为极点,以轴正半轴为极轴)中,曲线的方程为则与的交点个数为 .
六、解答题
14、(本小题满分13分)
如图7,椭圆的离心率为,轴被曲线 截得的线段长等于
的长半轴长。
(Ⅰ)求,的方程;
(Ⅱ)设与轴的交点为M,过坐标原点O的直线与相交于点A,B,直线MA,MB分别与相交与D,E.
(i)证明:;
(ii)记△MAB,△MDE的面积分别是.问:是否存在直线,使得=?请说明理由。
15、已知平面内一动点到点F(1,0)的距离与点到轴的距离的等等于1.
(I)求动点的轨迹的方程;
(II)过点作两条斜率存在且互相垂直的直线,设与轨迹相交于点,与轨迹相交于点,求的最小值.
七、选择题
16、(湖南理3)设图1是某几何体的三视图,则该几何体的体积为 3
3
2
正视图
侧视图
俯视图
图1
A. B.
C. D.
17、(湖南理5)设双曲线的渐近线方程为,则的值为
A.4 B.3 C.2 D.1
八、解答题
18、(湖南理21)
如图7,椭圆的离心率为,x轴被曲线截得的线段长等于C1的长半轴长。
(Ⅰ)求C1,C2的方程;
(Ⅱ)设C2与y轴的焦点为M,过坐标原点O的直线与C2相交于点A,B,直线MA,MB分别与C1相交与D,E.
(i)证明:MD⊥ME;
(ii)记△MAB,△MDE的面积分别是.问:是否存在直线l,使得?请说明理由。
19、(湖南理19)
如图5,在圆锥中,已知=,⊙O的直径,是的中点,为的中点.
(Ⅰ)证明:平面平面;
(Ⅱ)求二面角的余弦值。
九、填空题
20、(湖南理13)若执行如图3所示的框图,输入,,
则输出的数等于 。
21、若执行如图2所示的框图,输入则输出的数等于 .
22、若执行如图3所示的框图,输入,则输出的数等于 。
十、选择题
23、湖南文5.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由 算得,
附表:
0.050
0.010
0.001
k
3.841
6.635
10.828
参照附表,得到的正确结论是
A.有99%以上的把握认为“爱好该项运动与性别有关”
B.有99%以上的把握认为“爱好该项运动与性别无关”
C.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别有关”
D.在犯错误的概率不超过0.1%的前提下,认为 “爱好该项运动与性别无关”
24、(湖南理4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由算得,.
0.050
0.010
0.001
3.841
6.635
10.828
参照附表,得到的正确结论是
A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
十一、填空题
25、湖南文15.已知圆直线
(1)圆的圆心到直线的距离为 .
(2)圆上任意一点到直线的距离小于2的概率
为 .
十二、解答题
26、湖南文18.(本小题满分12分)
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份是我降雨量X(单位:毫米)有关,据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140, 110, 160, 70, 200, 160, 140, 160, 220, 200, 110, 160, 160, 200, 140, 110, 160, 220, 140, 160.
(Ⅰ)完成如下的频率分布表
近20年六月份降雨量频率分布表
降雨量
70
110
140
160
200
220
频率
(Ⅱ)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率是为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
十三、选择题
27、湖南文5.通过随机询问110名不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由
附表:
0.050
0.010
0.001
3.841
6.635
10.828
参照附表,得到的正确结论是( )
A. 有99%以上的把握认为“爱好该项运动与性别有关”
B. 有99%以上的把握认为“爱好该项运动与性别无关”
C. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
D. 在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
十四、填空题
28、件数分别是10,6,8,5,6,则该组数
29、的展开式中含的项的系数为__________。(结果用数值表示)湖南理
30、如图4, 是以为圆心,半径为1的圆的内接正方形,将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形内”,B表示事件“豆子落在扇形(阴影部分)内”,则
(1);
(2)
31、对于,将表示为,当时,,当时,为0或1.记为上述表示中为0的个数,(例如,:故)则
(1) (2)
32、(湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事
件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)= _____________; (2)P(B|A)= .
33、给定,设函数满足:对于任意大于的正整数,
(1)设,则其中一个函数在处的函数值为 ;
(2)设,且当时,,则不同的函数的个数为 。
34、江苏从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______
35、.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差.
十五、解答题
36、(湖南理18)某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。
37、(本题满分12分)
某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5;已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.
(I)完成如下的频率分布表:
近20年六月份降雨量频率分布表
降雨量
70
110
140
160
200
220
频率
(II)假定今年六月份的降雨量与近20年六月份的降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.
38、附加:23.(本小题满分10分)
设整数,是平面直角坐标系中的点,其中,.
(1)记为满足的点的个数,求;
(2)记为满足是整数的点的个数,求.
39、某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期望。
40、湖南理18.(本小题满分12分)
某商店试销某种商品20天,获得如下数据:
日销售量(件)
0
1
2
3
频数
1
5
9
5
试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。
(Ⅰ)求当天商品不进货的概率;
(Ⅱ)记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。
41、湖南理15.如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事件“豆子落在扇形OHE(阴影部分)内”,则
(1)P(A)= _____________; (2)P(B|A)= .
42、湖南理4.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由算得,.
0.050
0.010
0.001
3.841
6.635
10.828
参照附表,得到的正确结论是
A.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”
B.再犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”
C.有99%以上的把握认为“爱好该项运动与性别有关”
D.有99%以上的把握认为“爱好该项运动与性别无关”
43、(湖南理17)
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足csinA=acosC.
(Ⅰ)求角C的大小;
(Ⅱ)求sinA-cos(B+)的最大值,并求取得最大值时角A、B的大小。
44、已知函数() =,g ()=+。
(Ⅰ)求函数h ()=()-g ()的零点个数,并说明理由;
(Ⅱ)设数列满足,,证明:存在常数M,使得对于任意的,都有≤ .
45、如图6,长方形物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为,雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。
(Ⅰ)写出的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度,使总淋雨量最少。
46、设函数
(I)讨论的单调性;
(II)若有两个极值点,记过点的直线的斜率为,问:是否存在,使得若存在,求出的值,若不存在,请说明理由.
47、如图6,长方体物体E在雨中沿面P(面积为S)的垂直方向作匀速移动,速度为v(v>0),雨速沿E移动方向的分速度为。E移动时单位时间内的淋雨量包括两部分:(1)P或P的平行面(只有一个面淋雨)的淋雨量,假设其值与×S成正比,比例系数为;(2)其它面的淋雨量之和,其值为,记y为E移动过程中的总淋雨量,当移动距离d=100,面积S=时。
(Ⅰ)写出y的表达式
(Ⅱ)设0<v≤10,0<c≤5,试根据c的不同取值范围,确定移动速度v,使总淋雨量y最少。
以下是答案
一、选择题
1、B
【解析】,所以
。
2、B
【解析】由题可知,,若有则,即,解得。
3、D
【解析】由定积分知识可得,故选D。
4、D
【解析】由题,不妨令,则,令解得,因时,,当时,,所以当时,达到最小。即。
5、A
二、填空题
6、6
【解析】,又为奇函数,所以
。
三、解答题
7、解析:(I)的定义域为
令
当故上单调递增.
当的两根都小于0,在上,,故上单调递增.
当的两根为,
当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减.
(II)由(I)知,.
因为,所以
又由(I)知,.于是
若存在,使得则.即.亦即
[来源: ]
再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得
8、解析:(I)由题意知,E移动时单位时间内的淋雨量为,
故.
(II)由(I)知,当时,
当时,
故。
(1)当时,是关于的减函数.故当时,。
(2) 当时,在上,是关于的减函数;在上,是关于的增函数;故当时,。
9、解析:(I)由知,,而,且,则为的一个零点,且在内有零点,因此至少有两个零点
解法1:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;
所以,
当时,单调递减,而,则在内无零点;
当时,单调递增,则在内至多只有一个零点;
从而在内至多只有一个零点。综上所述,有且只有两个零点。
解法2:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,
综上所述,有且只有两个零点。
(II)记的正零点为,即。
(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:[来源: ]
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
(2)当时,由(1)知,在上单调递增。则,即。从而,即,由此猜测:。下面用数学归纳法证明:
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
综上所述,存在常数,使得对于任意的,都有.
四、选择题
10、C
解析:由双曲线方程可知渐近线方程为,故可知。
五、填空题
11、5,解析:(1)由点到直线的距离公式可得;
(2)由(1)可知圆心到直线的距离为5,要使圆上点到直线的距离小于2,即与圆相交所得劣弧上,由半径为,圆心到直线的距离为3可知劣弧所对圆心角为,故所求概率为
.
12、2
解析:曲线,,由圆心到直线的距离,故与的交点个数为2.
13、2
解析:曲线,曲线,联立方程消得,易得,故有2个交点。
六、解答题
14、解析:(I)由题意知,从而,又,解得。
故的方程分别为。
(II)(i)由题意知,直线的斜率存在,设为,则直线的方程为.
由得,
设,则是上述方程的两个实根,于是。
又点的坐标为,所以
故,即。
(ii)设直线的斜率为,则直线的方程为,由解得或,则点的坐标为,又直线的斜率为 ,同理可得点B的坐标为.于是
由得,解得或,
则点的坐标为;又直线的斜率为,同理可得点的坐标为
于是
因此
由题意知,解得 或。
又由点的坐标可知,,所以
故满足条件的直线存在,且有两条,其方程分别为和。
15、(I)设动点的坐标为,由题意为
化简得当、
所以动点P的轨迹C的方程为
(II)由题意知,直线的斜率存在且不为0,设为,则的方程为.
由,得
设则是上述方程的两个实根,于是
.
因为,所以的斜率为.设则同理可得:
故
当且仅当即时,取最小值16.
七、选择题
16、B
17、C
八、解答题
18、解 :(Ⅰ)由题意知
故C1,C2的方程分别为
(Ⅱ)(i)由题意知,直线l的斜率存在,设为k,则直线l的方程为.
由得
.
设是上述方程的两个实根,于是
又点M的坐标为(0,—1),所以
故MA⊥MB,即MD⊥ME.
(ii)设直线MA的斜率为k1,则直线MA的方程为解得
则点A的坐标为.
又直线MB的斜率为,
同理可得点B的坐标为
于是
由得
解得
则点D的坐标为
又直线ME的斜率为,同理可得点E的坐标为
于是.
因此
由题意知,
又由点A、B的坐标可知,
故满足条件的直线l存在,且有两条,其方程分别为
19、解法1:连结OC,因为
又底面⊙O,AC底面⊙O,所以,
因为OD,PO是平面POD内的两条相交直线,所以平面POD,
而平面PAC,所以平面POD平面PAC。
(II)在平面POD中,过O作于H,由(I)知,平面
所以平面PAC,又面PAC,所以
在平面PAO中,过O作于G,
连接HG,
则有平面OGH,
从而,故为二面角B—PA—C的平面角。
在
在
在
在
所以
故二面角B—PA—C的余弦值为
解法2:(I)如图所示,以O为坐标原点,OB、OC、OP所在直线分别为x轴、y轴,z轴建立空间直角坐标系,则
,
设是平面POD的一个法向量,
则由,得
所以
设是平面PAC的一个法向量,
则由,
得
所以
得。
因为
所以从而平面平面PAC。
(II)因为y轴平面PAB,所以平面PAB的一个法向量为
由(I)知,平面PAC的一个法向量为
设向量的夹角为,则
由图可知,二面角B—PA—C的平面角与相等,
所以二面角B—PA—C的余弦值为
九、填空题
20、
21、答案:
解析:由框图功能可知,输出的数等于
。
22、答案:
解析:由框图的算法功能可知,输出的数为三个数的方差,则
十、选择题
23、A
24、C
十一、填空题
25、(1)5(2)
十二、解答题
26、(本题满分12分)
解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为
降雨量
70
110
140
160
200
220
频率
(II)P(“发电量低于490万千瓦时或超过530万千瓦时”)
故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.
十三、选择题
27、答案:A
解析:由,而,故由独立性检验的意义可知选A.
十四、填空题
28、答案:40或60(只填一个也正确)
解析:有区间长度为80,可以将其等分8段,利用分数法选取试点:
,,由对称性可知,第二次试点可以是40或60。
29、17
30、(1);
(2)
解析:(1)由几何概型概率计算公式可得;
(2)由条件概率的计算公式可得
31、(1)2;(2)
解析:(1)因,故;
(2)在2进制的位数中,没有0的有1个,有1个0的有个,有2个0的有
个,……有个0的有个,……有个0的有个。故对所有2进制为位数的数,在所求式中的的和为:
。
又恰为2进制的最大7位数,所以。
32、(1)
33、(1),(2)16
解析:(1)由题可知,而时,则,故只须,故。
(2)由题可知,则,而时,即,即,,由乘法原理可知,不同的函数的个数为。
34、答案:
解析:从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为.也可以由得到.
本题主要考查随机事件与概率,古典概型的概率计算,互斥事件及其发生的概率.容易题.
35、答案:.
解析:五个数的平均数是7,方差为
还可以先把这组数都减去6再求方差,.
本题主要考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题.
十五、解答题
36、解(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1
件”)
(Ⅱ)由题意知,的可能取值为2,3.
(“当天商品销售量为1件”)
(“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”)
故的分布列为
2
3
的数学期望为
37、解:(I)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为
降雨量
70
110
140
160
200
220
频率
(II)
故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率为.
38、解:(1)点P的坐标满足条件:
(2)设为正整数,记为满足题设条件以及的点P的个数,只要讨论的情形,由知
设
所以
将代入上式,化简得
所以
39、解析:(I)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量1件”)=。
(II)由题意知,的可能取值为2,3.
;
故的分布列为
2
3
的数学期望为。
40、解(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1件”)
(Ⅱ)由题意知,的可能取值为2,3.
(“当天商品销售量为1件”)
(“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”)
故的分布列为
2
3
的数学期望为
41、(1)
42、C
43、解析:(I)由正弦定理得
因为所以
(II)由(I)知于是
取最大值2.
综上所述,的最大值为2,此时
44、解析:(I)由知,,而,且
,则为的一个零点,且在内有零点,因此至少有两个零点
解法1:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。又因为,则在内有零点,所以在内有且只有一个零点。记此零点为,则当时,;当时,;
所以,
当时,单调递减,而,则在内无零点;
当时,单调递增,则在内至多只有一个零点;
从而在内至多只有一个零点。综上所述,有且只有两个零点。
解法2:,记,则。
当时,,因此在上单调递增,则在内至多只有一个零点。因此在内也至多只有一个零点,
综上所述,有且只有两个零点。
(II)记的正零点为,即。
(1)当时,由,即.而,因此,由此猜测:。下面用数学归纳法证明:
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
(2)当时,由(1)知,在上单调递增。则,即
。从而,即,由此猜测:。下面用数学归纳法证明:
①当时,显然成立;
②假设当时,有成立,则当时,由
知,,因此,当时,成立。
故对任意的,成立。
综上所述,存在常数,使得对于任意的,都有.
45、解析:(I)由题意知,E移动时单位时间内的淋雨量为,
故.
(II)由(I)知,当时,
当时,
故。
(1)当时,是关于的减函数.故当时,。
(2) 当时,在上,是关于的减函数;在上,是关于的增函数;故当时,。
46、解析:(I)的定义域为
令
(1) 当故上单调递增.
(2) 当的两根都小于0,在上,,故上单调递增.
(3) 当的两根为,
当时, ;当时, ;当时, ,故分别在上单调递增,在上单调递减.
(II)由(I)知,.
因为,所以
又由(I)知,.于是
若存在,使得则.即.亦即
再由(I)知,函数在上单调递增,而,所以这与式矛盾.故不存在,使得
47、解:(I)由题意知,E移动时单位时间内的淋雨量为,
故,
(II)由(I)知
当时,
当
故
(1)当时,y是关于v的减函数,
故当
(2)当时,在上,y是关于v的减函数,
在上,y是关于v的增函数,
故当