- 824.00 KB
- 2021-05-21 发布
§27.2.2 直线与圆的位置关系1
学习目标:
经历探索直线和圆位置关系的过程,理解直线与圆有相交、相切、相离三种位置关系,了解切线的概念,探索切线与过切点的直径之间的关系。
学习重点:
直线和圆的三种位置关系,切线的概念和性质.
学习难点:
探索切线的性质.
学习方法:
教师指导学生探索法.
学习过程:
一、 举例:
【例1】在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?(1)r=2cm;(2)r=2.4cm(3)r=3cm.
【例2】已知:如图,△ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,若∠FDE=70°,求∠A的度数.
【例3】小红家的锅盖坏了,为了配一个锅盖,需要测量锅的直径(铅沿所形成的圆的直径),而小红家只有一把长20cm的直尺,根本不够长,怎么办呢?小红想了想,采取了以下办法:如图,首先把锅平放到墙根,锅沿刚好靠到两墙,用直尺紧贴墙面量得MA的长,即可求出锅的直径.请你利用图说明她这样做的理由.
【例4】如图3-5-9,已知,求作:(1)确定的圆心;(2)过点A且与⊙O相切的直线.(注:作图要求利用直尺和圆规,不写作法,但要求保留作图痕迹)
3
【例5】 东海某小岛上有一灯塔A,已知A塔附近方圆25海里范围内有暗礁,我110舰在O点处测得A塔在其北偏西60°方向,向正西方向航行20海里到达B处,测得A在其西北方向.如果该舰继续航行,是否有触礁的危险?请说明理由.(提示=1.414,=1.732)
教学反思:
§27.2.2 直线与圆的位置关系2
学习目标:
能判定一条直线是否为圆的切线,会过圆上一点画圆的切线,会作三角形的内切圆.
学习重点:
切线的判定和画法.
学习难点:
探索圆的切线的判定方法,作三角形内切圆的方法
学习方法:
师生共同探索法.
学习过程:
一、举例:
【例1】 如图,已知⊙O中,AB是直径,过B点作⊙O的切线BC,连结CO.若AD∥OC交⊙O于D.求证:CD是⊙O的切线.
【例2】 已知:如图,同心圆O,大圆的弦AB=CD,且AB是小圆的切线,切点为E.求证:CD是小圆的切线.
【例3】 如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3.
3
(1)当圆心O与C重合时,⊙O与AB的位置关系怎样?
(2)若点O沿CA移动时,当OC为多少时?⊙C与AB相切?
【例4】 如图,直角梯形ABCD中,∠A=∠B=90°,AD∥BC,E为AB上一点,DE平分∠ADC,CE平分∠BCD,以AB为直径的圆与边CD有怎样的位置关系?
【例5】 有一块锐角三角形木板,现在要用它截成一个最大面积的圆形木板,问怎样才能使圆形木板面积最大?
【例6】 设直线ι到⊙O的圆心的距离为d,半径为R,并使x2-2x+R=0,试由关于x的一元二次方程根的情况讨论ι与⊙O的位置关系.
【例7】 如图3-5-15,AB是⊙O直径,⊙O过AC的中点D,DE⊥BC,垂足为E.
(1)由这些条件,你能得出哪些结论?(要求:不准标其他字母,找结论过程中所连的辅助线不能出现在结论中,不写推理过程,写出4个结论即可)
(2)若∠ABC为直角,其他条件不变,除上述结论外你还能推出哪些新的正确结论?并画出图形.(要求:写出6个结论即可,其他要求同(1))
教学反思:
3
相关文档
- 初中数学中考名师面对面专题指导初2021-05-21 18:45:3819页
- 六年级上册数学教案-6 百分数的意2021-05-21 18:42:075页
- 五年级上册数学教案-5 平行四边形 2021-05-21 18:29:024页
- 三年级下册数学教案 3吨的认识 北2021-05-21 18:11:354页
- 初中数学突破中考压轴题几何模型之2021-05-21 18:10:513页
- 五年级上册数学教案-5 平行四边形2021-05-21 18:04:456页
- 一年级下册数学教案-2 百以内数的2021-05-21 17:51:164页
- 六年级上册数学教案-4 圆的周长 |2021-05-21 17:36:225页
- 五年级上册数学教案-6 列方程解决2021-05-21 17:33:073页
- 三年级上册数学教案-9 认识几分之2021-05-21 17:29:164页