- 64.50 KB
- 2021-04-18 发布
8.2.2不等式的简单变形
回顾与探索
在解一元一次方程时,我们主要是对方程进行变形。在研究解不等式时,我们同样应先探究不等式的变形规律。
如图8.2.3所示,一个倾斜的天平两边分别放有重物,其质量分别为a和b(显然a>b),如果在两边盘内分别加上等量的砝码c,那么盘子仍然像原来那样倾斜(即a+c>b+c)。
概括
不等式的性质1 如果a>b,那么
a+c>b+c,a-c>b-c
这就是说,不等式的两边都加上(或减去)同一个数或同一个整式,不等式的方向不变。
思考
不等式的两边都乘以(或除以)同一个不为零的数,不等号的方向是否也不变呢?
试一试
将不等式7>4两边都乘以同一个数,比较所得的数的大小,用“<”或“>”填空:
7×3_______4×3,
7×2_______4×2,
7×1_______4×1,
7×0_______4×0,
7×(-1)_______4×(-1),
7×(-2)_______4×(-2),
7×(-3)_______4×(-3),
………………………………………………
从中你能发现什么?
概括
不等式的性质2 如果a>b,并且c>0,那么ac>bc。
不等式的性质3 如果a>b,并且c<0,那么aca或x-3; (2)-2x<6。
解 (1)不等式的两边都乘以2,不等号的方向不变,所以
x×2>(-3)×2,
得 x>-6。
(2)不等式的两边都除以-2(即乘以-),不等式的方向改变,所以
-2x×(-)>6×(-),
得 x>-3。
这里的变形,与方程变形中的“将未知数的系数化为1”相类似,它依据的是不等式的性质2或3,要注意不等式两边乘以(或除以)的数是正数还是负数,确定变形时不等号的方向是否需要改变。
练习
解下列不等式,并在数轴上表示出来:
1.X-2>0 2.X+1>0
3.-2x<4 4.3x≤0
2
相关文档
- 六年级下册数学教案 容积 冀教版 (2021-04-18 03:14:243页
- 二年级上册数学教案-5 几何小实践2021-04-18 03:02:563页
- 2020初中数学教研工作计划2021-04-18 02:57:437页
- 六年级数学教案《利息问题》2021-04-18 02:43:5818页
- 五年级上册数学教案-1复习与提高(小2021-04-18 02:38:085页
- 三年级上册数学教案-8 合理搭配|北2021-04-18 02:35:406页
- 三年级上册数学教案-6轴对称图形-2021-04-18 02:35:404页
- 二年级上册数学教案- 7 的乘法口2021-04-18 02:29:382页
- 二年级上册数学教案 观察物体 北京2021-04-18 02:25:067页
- 初中数学苏科九上期末数学试卷2021-04-18 02:13:3712页