- 1.72 MB
- 2021-04-18 发布
2012高考真题分类汇编:函数与方程
一、选择题
1、【2012高考真题山东理8】定义在上的函数满足.当时,,当时,。则
(A)335 (B)338 (C)1678 (D)2012
2、【2012高考真题重庆理7】已知是定义在R上的偶函数,且以2为周期,则“为上的增函数”是“为上的减函数”的
(A)既不充分也不必要的条件 (B)充分而不必要的条件
(C)必要而不充分的条件 (D)充要条件
3、【2012高考真题北京理8】某棵果树前n前的总产量S与n之间的关系如图所示.从目前记录的结果看,前m年的年平均产量最高。m值为( )
A.5 B.7 C.9 D.11
4、【2012高考真题安徽理2】下列函数中,不满足:的是( )
5、【2012高考真题天津理4】函数在区间(0,1)内的零点个数是
(A)0 (B)1
(C)2 (D)3
6、【2012高考真题全国卷理9】已知x=lnπ,y=log52,,则
(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x
7、【2012高考真题新课标理10】 已知函数;则的图像大致为( )
8、【2012高考真题陕西理2】下列函数中,既是奇函数又是增函数的为( )
A. B. C. D.
9、【2012高考真题重庆理10】设平面点集
,则所表示的平面图形的面积为
(A) (B) (C) (D)
10、【2012高考真题山东理3】设且,则“函数在上是减函数 ”,是“函数在上是增函数”的
(A)充分不必要条件 (B)必要不充分条件
(C)充分必要条件 (D)既不充分也不必要条件
11、【2012高考真题四川理5】函数的图象可能是( )
12、【2012高考真题山东理9】函数的图像大致为
13、【2012高考真题山东理12】设函数,若的图象与图象有且仅有两个不同的公共点,则下列判断正确的是
A.当时,
B. 当时,
C. 当时,
D. 当时,
14、【2012高考真题辽宁理11】设函数f(x)满足f()=f(x),f(x)=f(2x),且当时,f(x)=x3.又函数g(x)=|xcos|,则函数h(x)=g(x)-f(x)在上的零点个数为
(A)5 (B)6 (C)7 (D)8
15、【2012高考真题江西理3】若函数,则f(f(10)=
A.lg101 B.2 C.1 D.0
16、【2012高考真题江西理10】如右图,已知正四棱锥所有棱长都为1,点E是侧棱上一动点,过点垂直于的截面将正四棱锥分成上、下两部分,记截面下面部分的体积为则函数的图像大致为
17、【2012高考真题湖南理8】已知两条直线 :y=m 和: y=(m>0),与函数的图像从左至右相交于点A,B ,与函数的图像从左至右相交于C,D .记线段AC和BD在X轴上的投影长度分别为a ,b ,当m 变化时,的最小值为
A. B. C. D.
18、【2012高考真题湖北理9】函数在区间上的零点个数为
A.4 B.5
C.6 D.7
19、【2012高考真题广东理4】下列函数中,在区间(0,+∞)上为增函数的是
A.y=ln(x+2) B.y=- C.y=()x D.y=x+
20、【2012高考真题福建理7】设函数则下列结论错误的是
A.D(x)的值域为{0,1}
B. D(x)是偶函数
C. D(x)不是周期函数D.
D(x)不是单调函数
21、【2012高考真题福建理10】函数f(x)在[a,b]上有定义,若对任意x1,x2∈[a,b],有则称f(x)在[a,b]上具有性质P.设f(x)在[1,3]上具有性质P,现给出如下命题:
①f(x)在[1,3]上的图像时连续不断的;
②f(x2)在[1,]上具有性质P;
③若f(x)在x=2处取得最大值1,则f(x)=1,x∈[1,3];
④对任意x1,x2,x3,x4∈[1,3],有
其中真命题的序号是
A.①② B.①③ C.②④ D.③④
22、【2012高考真题江西理2】下列函数中,与函数定义域相同的函数为
A. B. C.y=xex D.
23、【2012高考真题四川理3】函数在处的极限是( )
A、不存在 B、等于 C、等于 D、等于
二、填空题
24、【2012高考真题福建理15】对于实数a和b,定义运算“﹡”:,
设,且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1,x2,x3,则x1x2x3的取值范围是_________________.
25、【2012高考真题北京理14】已知,,若同时满足条件:
①,或;
②, 。
则m的取值范围是_______。
26、【2012高考江苏5】函数的定义域为 ▲ .
27、【2012高考真题上海理7】已知函数(为常数)。若在区间上是增函数,则的取值范围是 。
28、【2012高考江苏10】设是定义在上且周期为2的函数,在区间上,
其中.若,则的值为 ▲ .
29、【2012高考真题天津理14】已知函数的图象与函数的图象恰有两个交点,则实数k的取值范围是_________.
30、【2012高考真题上海理9】已知是奇函数,且,若,则 。
三、解答题
31、【2012高考真题湖南理20】
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k(k为正整数).
(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;
(2)假设这三种部件的生产同时开工,试确定正整数k的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.
32、【2012高考江苏17】如图,建立平面直角坐标系,轴在地平面上,轴垂直于地平面,单位长度为1千米.某炮位于坐标原点.已知炮弹发射后的轨迹在方程表示的曲线上,其中与发射方向有关.炮的射程是指炮弹落地点的横坐标.
(1)求炮的最大射程;
(2)设在第一象限有一飞行物(忽略其大小),其飞行高度为3.2千米,试问它的横坐标不超过多少时,
炮弹可以击中它?请说明理由.
33、【2012高考真题陕西理21】
设函数
(1)设,,证明:在区间内存在唯一的零点;
(2)设,若对任意,有,求的取值范围;
(3)在(1)的条件下,设是在内的零点,判断数列的增减性。
34、【2012高考真题上海理21】海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里处,如图.现假设:①失事船的移动路径可视为抛物线;②定位后救援船即刻沿直线匀速前往救援;③救援船出发小时后,失事船所在位置的横坐标为.
(1)当时,写出失事船所在位置的纵坐标.若此时两船恰好会合,求
救援船速度的大小和方向;
(2)问救援船的时速至少是多少海里才能追上失事船?
35、【2012高考真题上海理20】已知函数.
(1)若,求的取值范围;
(2)若是以2为周期的偶函数,且当时,有,求函数()的反函数.
36、【2012高考真题江西理22】
若函数h(x)满足
(1)h(0)=1,h(1)=0;
(2)对任意,有h(h(a))=a;
(3)在(0,1)上单调递减。
则称h(x)为补函数。已知函数
(1)判函数h(x)是否为补函数,并证明你的结论;
以下是答案
一、选择题
1、 B
2、 D
3、 C
4、 C
5、 B
6、 D
7、 B
8、 D
9、 D
10、 A
11、 D
12、 D
13、 B
14、 B
15、 B
16、 A
17、 B
18、 C
19、 A
20、 C
21、 D
22、 D
23、 A
二、填空题
24、 .
25、
26、
。
【考点】函数的定义域,二次根式和对数函数有意义的条件,解对数不等式。
27、
28、 。
【考点】周期函数的性质。
29、 或
30、
三、解答题
31、 解:(Ⅰ)设完成A,B,C三种部件的生产任务需要的时间(单位:天)分别为
由题设有
期中均为1到200之间的正整数.
(Ⅱ)完成订单任务的时间为其定义域为
易知,为减函数,为增函数.注意到
于是
(1)当时, 此时
,
由函数的单调性知,当时取得最小值,解得
.由于
.
故当时完成订单任务的时间最短,且最短时间为.
(2)当时, 由于为正整数,故,此时易知为增函数,则
.
由函数的单调性知,当时取得最小值,解得.由于
此时完成订单任务的最短时间大于.
(3)当时, 由于为正整数,故,此时
由函数的单调性知,
当时取得最小值,解得.类似(1)的讨论.此时
完成订单任务的最短时间为,大于.
综上所述,当时完成订单任务的时间最短,此时生产A,B,C三种部件的人数
分别为44,88,68.
【解析】【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.
32、解:(1)在中,令,得。
由实际意义和题设条件知。
∴,当且仅当时取等号。
∴炮的最大射程是10千米。
(2)∵,∴炮弹可以击中目标等价于存在,使成立,
即关于的方程有正根。
由得。
此时,(不考虑另一根)。
∴当不超过6千米时,炮弹可以击中目标。
【考点】函数、方程和基本不等式的应用。
【解析】(1)求炮的最大射程即求与轴的横坐标,求出后应用基本不等式求解。
(2)求炮弹击中目标时的横坐标的最大值,由一元二次方程根的判别式求解。
33、
34、
35、
36、
(2)若存在,使得h(m)=m,若m是函数h(x)的中介元,记时h(x)的中介元为xn,且,若对任意的,都有Sn< ,求的取值范围;
(3)当=0,时,函数y= h(x)的图像总在直线y=1-x的上方,求P的取值范围。