- 1.64 MB
- 2021-04-17 发布
考点9 导数的几何意义以及应用
【考点分类】
热点一 导数的几何意义
1.【2013年普通高等学校统一考试试题大纲全国文科】已知曲线在点处切线的斜率为8,( )[来源:学科网ZXXK]
(A) (B) (C) (D)
2.【2013年普通高等学校招生全国统一考试(广东卷)理】若曲线在点处的切线平行于轴,则______.
3.【2013年普通高等学校招生全国统一考试(江西卷)文科】若曲线在点(1,2)处的切线经过坐标原点,则= .
4.【2013年普通高等学校招生全国统一考试(江西卷)理】设函数在内可导,且则=__________.
5.(2012年高考(课标文))曲线在点(1,1)处的切线方程为________
【答案】
【方法总结】
求曲线的切线方程有两种情况,一是求曲线y=f(x)在点P(x0,y0)处的切线方程,其方法如下:
(1)求出函数y=f(x)在点x=x0处的导数,即曲线y=f(x)在点P(x0,f(x0))处切线的斜率.
(2)在已知切点坐标和切线斜率的条件下,求得切线方程为y=y0+f′(x0)(x-x0).如果曲线y=f(x)在点P(x0,f(x0))处的切线平行于y轴,由切线定义可知,切线方程为x=x0.
二是求曲线y=f(x)过点P(x0,y0)的切线方程,其方法如下:
(1)设切点A(xA,f(xA)),求切线的斜率k=f′(xA),写出切线方程.
(2)把P(x0,y0)的坐标代入切线方程,建立关于xA的方程,解得xA的值,进而写出切线方程.
热点二 导数的几何意义的应用
7.【2013年普通高等学校招生全国统一考试福建卷】已知函数
(1) 当时,求曲线在点处的切线方程;
(2) 求函数的极值.
8.【2013年普通高等学校招生全国统一考试(陕西卷)理】已知函数.
(Ⅰ) 若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;
(Ⅱ) 设x>0, 讨论曲线y=f (x) 与曲线 公共点的个数.
(Ⅲ) 设a
相关文档
- 高考数学复习练习第1部分 专题七 2021-04-17 09:35:203页
- 高考数学复习练习试题2_5对数与对2021-04-16 21:44:363页
- 高考数学复习练习试题7_4基本不等2021-04-16 15:29:203页
- 高考数学复习练习试题11_3几何概型2021-04-16 15:06:464页
- 高考数学复习练习试题12_4直接证明2021-04-16 11:20:313页
- 高考数学复习练习第2部分 专题一 2021-04-16 00:27:586页
- 高考数学复习练习试题8_4空间几何2021-04-15 20:39:373页
- 高考数学复习练习试题9_5椭 圆2021-04-15 17:32:144页
- 高考数学复习练习试题10_1统 计2021-04-15 02:44:533页
- 高考数学复习练习第1部分 专题三 2021-04-15 00:24:165页