- 24.48 KB
- 2021-04-16 发布
单元检测九 直线与圆(提升卷)
考生注意:
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.
2.答卷前,考生务必用蓝、黑色字迹的钢笔或圆珠笔将自己的姓名、班级、学号填写在相应位置上.
3.本次考试时间100分钟,满分130分.
4.请在密封线内作答,保持试卷清洁完整.
第Ⅰ卷(选择题 共60分)
一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知直线l:ax+y-2-a=0在x轴和y轴上的截距相等,则a的值是( )
A.1 B.-1
C.-2或-1 D.-2或1
答案 D
解析 ①当a=0时,y=2不合题意.
②当a≠0时,令x=0,得y=2+a,令y=0,得x=,则=a+2,得a=1或a=-2.
2.经过直线l1:2x-3y+2=0与l2:3x-4y-2=0的交点,且平行于直线4x-2y+7=0的直线方程是( )
A.x-2y+9=0 B.4x-2y+9=0
C.2x-y-18=0 D.x+2y+18=0
答案 C
解析 联立两条直线的方程得解得x=14,y=10.所以l1,l2的交点坐标是(14,10).设与直线4x-2y+7=0平行的直线方程为4x-2y+c=0(c≠7),因为4x-2y+c=0过l1与l2的交点(14,10),所以c=-36,所以所求直线方程为4x-2y-36=0,即2x-y-18=0.故选C.
3.坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是( )
A. B.
C. D.
答案 A
解析 直线x-2y+2=0的斜率k=,设坐标原点(0,0)关于直线x-2y+2=0对称的点的坐标是(x0,y0),依题意可得解得即所求点的坐标是.故选A.
4.已知△ABC的顶点A(0,1),B(4,3),C(1,-1),则AB边上的中线的方程是( )
A.x+2y-3=0 B.3x+y-4=0
C.3x-y-4=0 D.3x-y+3=0
答案 C
解析 AB的中点为(2,2),又由C(1,-1),得AB边上的中线方程为y-2=3(x-2),化简得3x-y-4=0.故选C.
5.若直线ax-by+1=0平分圆C:x2+y2+2x-4y+1=0的周长,则ab的取值范围是( )
A. B.
C. D.
答案 D
解析 ∵把圆的方程化为标准方程得(x+1)2+(y-2)2=4,∴圆心坐标为(-1,2),根据题意可知,圆心在直线ax-by+1=0上,∴-a-2b+1=0,即a=1-2b,ab=(1-2b)b=-2b2+b=-22+≤,当b=时,ab取得最大值.
6.已知点A(-3,-4),B(6,3)到直线l:ax+y+1=0的距离相等,则实数a的值等于( )
A. B.-
C.-或- D.-或
答案 C
解析 由已知可得=,化简得|3a+3|=|6a+4|,
解得a=-或a=-.
7.已知圆O1的方程为x2+y2=1,圆O2的方程为(x+a)2+y2=4,如果这两个圆有且只有一个公共点,那么实数a的所有取值构成的集合是( )
A.{1,-1,3,-3} B.{5,-5,3,-3}
C.{1,-1} D.{3,-3}
答案 A
解析 由题意得两圆心之间的距离d=|a|=2+1=3或d=|a|=2-1=1,所以a=1,-1,3,-3.故选A.
8.已知点P(1,2)和圆C:x2+y2+kx+2y+k2=0,过点P作圆C的切线有两条,则实数k的取值范围是( )
A.R B.
C. D.
答案 C
解析 圆C:2+(y+1)2=1-k2,因为过点P作圆C的切线有两条,所以点P在圆C外,从而解得-