- 51.00 KB
- 2021-04-15 发布
复数代数形式的乘除运算 课时作业
一、选择题
1.已知复数z=2-i,则z·的值为( )
A.5 B.
C.3 D.
z·=(2-i)(2+i)=22-i2=4+1=5,故选A.
答案: A
2.i是虚数单位,复数=( )
A.1-i B.-1+i
C.+i D.-+i
===1-i,故选A.
答案: A
3.z1,z2是复数,且z+z<0,则正确的是( )
A.z<-z
B.z1,z2中至少有一个是虚数
C.z1,z2中至少有一个是实数
D.z1,z2都不是实数
取z1=1,z2=2i满足z+z<0,从而排除A和D;取z1=i,z2=2i,满足z+z<0,排除C,从而选B.
答案: B
4.若z+=6,z·=10,则z=( )
A.1±3i B.3±i
C.3+i D.3-i
设z=a+bi(a,b∈R),则=a-bi,
∴解得a=3,b=±1,则z=3±i.
答案: B
5.已知复数z=,是z的共轭复数,则z·=( )
【导学号:19220050】
A. B.
C.1 D.2
法一:z===
==-+i,∴=--i.
∴z·=
=+=.
法二:∵z=
∴|z|===.
∴z·=|z|2=.
答案: A
二、填空题
6.若(x+i)i=-1+2i(x∈R),则x=________.
由题意,得x+i====2+i,
所以x=2.
答案: 2
7.(2018·天津高三检测)复数的共轭复数是________.
===2+i,其共轭复数为2-i.
答案: 2-i
8.复数的模为,则实数a的值是________.
===,解得a=±.
答案: ±
三、解答题
9.(2018·唐山高三检测)若z满足z-1=(1+z)i,求z+z2的值.
【导学号:19220051】
【解】 ∵z-1=(1+z)i,
∴z===-+i,
∴z+z2=-+i+2=-+i+=-1.
10.(2018·天津高三检测)已知复数z满足z=(-1+3i)·(1-i)-4.
(1)求复数z的共轭复数;
(2)若w=z+ai,且复数w对应向量的模不大于复数z所对应向量的模,求实数a的取值范围.
【解】 (1)z=-1+i+3i+3-4=-2+4i,
所以复数z的共轭复数为-2-4i.
(2)w=-2+(4+a)i,复数w对应的向量为(-2,4+a),其模为=.
又复数z所对应向量为(-2,4),其模为2.由复数w对应向量的模不大于复数z所对应向量的模,得20+8a+a2≤20,a2+8a≤0,
所以,实数a的取值范围是-8≤a≤0.
[能力提升]
1.若复数z满足z(1+i)=2i(i为虚数单位),则|z|=( )
A.1 B.2
C. D.
∵z(1+i)=2i,∴z===1+i,
∴|z|==.
答案: C
2.设z的共轭复数为,z=1+i,z1=z·,则+等于( )
A.+i B.-i
C. D.
由题意得=1-i,∴z1=z·=(1+i)(1-i)=2.
∴+=+=-=.
答案: C
3.对任意复数z=x+yi(x,y∈R),i为虚数单位,则下列结论正确的是________.
①|z-|=2y;
②z2=x2+y2;
③|z-|≥2x;
④|z|≤|x|+|y|.
对于①,=x-yi(x,y∈R),
|z-|=|x+yi-x+yi|=|2yi|=|2y|,
故不正确;
对于②,z2=x2-y2+2xyi,故不正确;
对于③,|z-|=|2y|≥2x不一定成立,故不正确;
对于④,|z|=≤|x|+|y|,故正确.
答案: ④
4.复数z=,若z2+<0,求纯虚数a.
【解】 由z2+<0可知z2+是实数且为负数.
z====1-i.
∵a为纯虚数,∴设a=mi(m≠0),则
z2+=(1-i)2+=-2i+
=-+i<0,
∴
∴m=4,∴a=4i.
相关文档
- 2020届一轮复习通用版专题8-2城市2021-04-15 01:45:3313页
- 高考生物一轮复习作业必修 组成细2021-04-14 23:18:517页
- 2019版地理浙江选考大二轮复习作业2021-04-14 20:01:495页
- 2020届一轮复习人教A版高考政治人2021-04-14 19:06:2811页
- 2020届一轮复习通用版专题4-3河流2021-04-14 13:27:2914页
- 高考第一轮复习数学133函数的极限2021-04-14 11:59:549页
- 2020届一轮复习人教A版高考政治人2021-04-13 22:18:3811页
- 部编版一年级拼音复习作业2021-04-13 18:59:113页
- 高考化学二轮复习作业卷化学平衡12021-04-12 22:59:3811页
- 高二化学自主复习作业一(无答案)2021-04-12 16:52:1711页