- 718.00 KB
- 2024-05-16 发布
A佳经典•高二期末考试试题
数学
1
2
3
4
5
6
7
8
9
10
11
12
D
A
B
C
A
B
C
D
B
A
C
B
一、选择题
1.D ,,则
2.A
3.B ,
4.C
5.A
6.B
7.C
8.D
9.B
10.A 的周期,在同一坐标系下分别画出和的图像
11.C 是的中点,由中位线可知,
又,
12.B ,在
上不单调,即在上有极值点,所以在上有解,即在上有解
(1) 当有一个解时,则,所以或者
(2) 当有两解时,根据根的分布,则 无解
所以或者
二、 填空题
13.
14.
15.
16. 画出图像,连接,则,故,又直线的斜率为,故,又,所以,又在双曲线上,
故,化简得,
故.因为,故解得
三、 解答题
17.(1),
当时,,,
当时,,,即 ············2分
数列是以为首项,为公比的等比数列,
························································3分
,···························5分
(2) ···················· 7分
·······························10分
18.(1),…3分
的最大值为, ··············································4分
此时即·······6分
(2),, ····8分
由得得,········10分
故 ·············································· 12分
19.解法一:(1)为矩形,且平面平面,
平面平面,在中,,
在梯形中,,从而.
在中,,可知,
在中,,可知,
又,平面··································6分
(2)取的中点,连接,由知,
由知,为二面角的平面角.······9分
由(1)知平面,,又,
,···············11分
············12分
解法二:(2)为矩形,且平面平面,平面,
又,所以可以以为原点建立如图所示空间直角坐标系,则
,
,
设平面的法向量为,则 ,
令,得.·················································8分
设平面的法向量为,则,
令,得.··················································10分
,·········································11分
所以二面角的正弦值为. ·································12分
20.(1)设“从学习时间的6个数据中随机选取2个数据,求这2个数据不相邻”为事件,
这6个数据为
抽取2个数据的基本事件有,共种,
其中相邻的有,共种,
··········································3分
所以······················································5分
(2)前四组数据为:
学习时间(第天)
3
4
5
6
当天得分
17
20
19
24
······6分
·······························8分
···························10分
当时,,此时成立
当时,,此时成立
为恰当回归方程.···········································12分
21.(1) ····················································4分
(2)若直线斜率不存在,则直线方程为,
此时,·························································5分
若直线斜率存在,设直线方程为,,
联立,得:
∴ ······································7分
∴∴···················8分
∵直线与圆相切,∴,即·····················9分
∴
当时,
当时,,·······························11分
当且仅当时,等号成立 ∴·······················12分
22. (1),定义域为 ····································1分
当时,,所以在区间上为减函数,
当时,,所以在区间上为增函数,··················2分
所以,无极小值 ;
的递减区间,递增区间 ·······························4分
(2)因为,所以················· 6分
① 当时,,在上单调递减,
由, 所以,即,得 ····················8分
① 当时,,在上单调递增,
所以,即,得 ·································10分
③ 当时,
在,,在上单调递减,在,,在上单调递增
所以 即 ()
由(Ⅰ)知在上单调递减
故,而,所以不等式()无解
综上所述,. ·····································12分