- 336.50 KB
- 2021-06-26 发布
2018年四川省南充市高考数学一诊试卷(文科)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)集合A={0,1,2},B={x|﹣1<x<2},则A∩B=( )
A.{0} B.{1} C.{0,1} D.{0,1,2}
2.(5分)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于( )
A. B. C.﹣ D.2
3.(5分)该试题已被管理员删除
4.(5分)已知变量x与变量y之间具有相关关系,并测得如下一组数据:
x
6
5
10
12
y
6
5
3
2
则变量x与y之间的线性回归直线方程可能为( )
A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.7
5.(5分)已知数列{an}满足:a1=1,an>0,an+12﹣an2=1(n∈N*),那么使an<5成立的n的最大值为( )
A.4 B.5 C.24 D.25
6.(5分)已知函数f (x)=2sin(ωx+φ)(ω>0)的部分图象如图所示,则函数f (x)的一个单调递增区间是( )
A.() B.() C.() D.()
7.(5分)若0<m<1,则( )
A.logm(1+m)>logm(1﹣m) B.logm(1+m)>0
C.1﹣m>(1+m)2 D.
8.(5分)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为( )
A. B.4 C.3 D.
9.(5分)函数f(x)=x3+x2﹣ax﹣4在区间(﹣1,1)内恰有一个极值点,则实数a的取值范围为( )
A.(1,5) B.[1,5) C.(1,5] D.(﹣∞,1)∪(5,+∞)
10.(5分)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为( )
A. B.48π C.24π D.16π
11.(5分)设数列{an}前n项和为Sn,已知,则S2018等于( )
A. B. C. D.
12.(5分)已知抛物线C:x2=4y,直线l:y=﹣1,PA,PB为抛物线C的两条切线,切点分别为A,B,则“点P在l上”是“PA⊥PB”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.(5分)若x,y满足约束条件,则z=3x﹣4y的最小值为 .
14.(5分)数列{an}满足:若log2an+1=1+log2an,a3=10,则a8= .
15.(5分)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m∈R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 .
16.(5分)函数f(x)=,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是 .
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(12分)设函数.
(1)求函数f(x)的最小正周期和值域;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若,且,求角C的值.
18.(12分)某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.
(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;
(2)若已从年龄在[35,45),[45,55]的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.
19.(12分)如图,边长为2的正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.
(1)证明:MN∥平面 BCE;
(2)求三棱锥B﹣EMN的体积.
20.(12分)已知椭圆+=1(a>b>0)的左右焦点分别为F1、F2,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若P是椭圆上的任意一点,求•的取值范围.
21.(12分)已知函数f(x)=ex,直线l的方程为y=kx+b,(k∈R,b∈R).
(1)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(2)若f(x)≥kx+b对任意x∈[0,+∞)恒成立,求实数k,b应满足的条件.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.
(1)求C的普通方程和l的倾斜角;
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.
23.已知函数f(x)=|x+1|.
(1)求不等式f(x)<|2x+1|﹣1的解集M;
(2)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).
2018年四川省南充市高考数学一诊试卷(文科)
参考答案与试题解析
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.(5分)集合A={0,1,2},B={x|﹣1<x<2},则A∩B=( )
A.{0} B.{1} C.{0,1} D.{0,1,2}
【解答】解:∵A={0,1,2},B={x|﹣1<x<2}
∴A∩B={0,1}
故选C
2.(5分)如果复数(其中i为虚数单位,b为实数)的实部和虚部互为相反数,那么b等于( )
A. B. C.﹣ D.2
【解答】解:=
=+i
由=﹣得b=﹣.
故选C.
3.(5分)该试题已被管理员删除
4.(5分)已知变量x与变量y之间具有相关关系,并测得如下一组数据:
x
6
5
10
12
y
6
5
3
2
则变量x与y之间的线性回归直线方程可能为( )
A.=0.7x﹣2.3 B.=﹣0.7x+10.3 C.=﹣10.3x+0.7 D.=10.3x﹣0.7
【解答】解:根据表中数据,得;
=(6+5+10+12)=,
=(6+5+3+2)=4,
且变量y随变量x的增大而减小,是负相关,
所以,验证=时,=﹣0.7×+10.3≈4,
即回归直线=﹣0.7x+10.3过样本中心点(,).
故选:B.
5.(5分)已知数列{an}满足:a1=1,an>0,an+12﹣an2=1(n∈N*),那么使an<5成立的n的最大值为( )
A.4 B.5 C.24 D.25
【解答】解:由题意an+12﹣an2=1,
∴an2为首项为1,公差为1的等差数列,
∴an2=1+(n﹣1)×1=n,又an>0,则an=,
由an<5得<5,
∴n<25.
那么使an<5成立的n的最大值为24.
故选C.
6.(5分)已知函数f (x)=2sin(ωx+φ)(ω>0)的部分图象如图所示,则函数f (x)的一个单调递增区间是( )
A.() B.() C.() D.()
【解答】解:由图象可知:T=﹣=,
∴T==π,
∴ω=2,
又×2+φ=π(或×2+φ=),
∴φ=﹣,
∴f (x)=2sin(2x﹣),
由2kπ﹣≤2x﹣≤2kπ+,得其单调递增区间为:[kπ﹣,kπ+].
当k=1时,单调递增区间为:[,].
显然,(,)⊆[,].
故选D.
7.(5分)若0<m<1,则( )
A.logm(1+m)>logm(1﹣m) B.logm(1+m)>0
C.1﹣m>(1+m)2 D.
【解答】解:①∵0<m<1,∴函数y=logmx是(0,+∞)上的减函数,又∵1+m>1﹣m>0,∴logm(1+m)<logm(1﹣m);∴A不正确;
②∵0<m<1,∴1+m>1,∴logm(1+m)<0;∴B不正确;
③∵0<m<1,∴0<1﹣m<1,1+m>1,∴1﹣m>(1+m)2;∴C不正确;
④∵0<m<1,∴0<1﹣m<1,∴函数y=(1﹣m)x是定义域R上的减函数,又∵<,∴>;∴D正确;
故选:D.
8.(5分)已知一个棱长为2的正方体,被一个平面截后所得几何体的三视图如图所示,则该截面的面积为( )
A. B.4 C.3 D.
【解答】解:由三视图还原原几何体如图,
截面是等腰梯形FHDE,
∵正方体的棱长为2,
∴FH=,DE=,梯形的高为.
∴该截面的面积为S=.
故选:A.
9.(5分)函数f(x)=x3+x2﹣ax﹣4在区间(﹣1,1)内恰有一个极值点,则实数a的取值范围为( )
A.(1,5) B.[1,5) C.(1,5] D.(﹣∞,1)∪(5,+∞)
【解答】解:由题意,f′(x)=3x2+2x﹣a,
则f′(﹣1)f′(1)<0,
即(1﹣a)(5﹣a)<0,
解得1<a<5,
另外,当a=1时,函数f(x)=x3+x2﹣x﹣4在区间(﹣1,1)恰有一个极值点,
当a=5时,函数f(x)=x3+x2﹣5x﹣4在区间(﹣1,1)没有一个极值点,
故选:B.
10.(5分)已知A,B,C,D是同一球面上的四个点,其中△ABC是正三角形,AD⊥平面ABC,AD=2AB=6,则该球的体积为( )
A. B.48π C.24π D.16π
【解答】解:由题意画出几何体的图形如图,
把A、B、C、D扩展为三棱柱,
上下底面中心连线的中点与A的距离为球的半径,
AD=2AB=6,OE=3,△ABC是正三角形,
所以AE=.
AO=.
所求球的体积为:==32.
故选A.
11.(5分)设数列{an}前n项和为Sn,已知,则S2018等于( )
A. B. C. D.
【解答】解:∵a1=
∴a2=2×﹣1=,
a3=2×﹣1=,
a4=2×=
a5=2×=,
∴数列{an}是以4为周期的周期数列,
∴a1+a2+a3+a4=+++=2,
∴S2018=504×(a1+a2+a3+a4)+a1+a2=1008+=,
故选:B.
12.(5分)已知抛物线C:x2=4y,直线l:y=﹣1,PA,PB为抛物线C的两条切线,切点分别为A,B,则“点P在l上”是“PA⊥PB”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
【解答】解:由x2=4y,对其求导得.
设A,B,则直线PA,PB的斜率分别为kPA=,kPB=.
由点斜式得PA,PB的方程分别为:y﹣=.=(x﹣x2),
联立解得P,
因为P在l上,所以=﹣1,
所以kPA•kPB==﹣1,所以PA⊥PB.反之也成立.
所以“点P在l上”是“PA⊥PB”的充要条件.
故选:C.
二、填空题(每题5分,满分20分,将答案填在答题纸上)
13.(5分)若x,y满足约束条件,则z=3x﹣4y的最小值为 ﹣1 .
【解答】解:由z=3x﹣4y,得y=x﹣,作出不等式对应的可行域(阴影部分),
平移直线y=x﹣,由平移可知当直线y=x﹣,
经过点B(1,1)时,直线y=x﹣的截距最大,此时z取得最小值,
将B的坐标代入z=3x﹣4y=3﹣4=﹣1,
即目标函数z=3x﹣4y的最小值为﹣1.
故答案为:﹣1.
14.(5分)数列{an}满足:若log2an+1=1+log2an,a3=10,则a8= 320 .
【解答】解:∵log2an+1=1+log2an
∴an+1=2an
∴数列{an}是2为公比的等比数列
∴a8=a325=320
故答案为:320
15.(5分)若圆O1:x2+y2=5与圆O2:(x+m)2+y2=20(m∈
R)相交于A,B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是 4 .
【解答】解:由题 O1(0,0)与O2:(﹣m,0),根据圆心距大于半径之差而小于半径之和,
可得<|m|<.
再根据题意可得O1A⊥AO2,
∴m2=5+20=25,
∴m=±5,
∴利用,
解得:AB=4.
故答案为:4.
16.(5分)函数f(x)=,若方程f(x)=mx﹣恰有四个不相等的实数根,则实数m的取值范围是 (,) .
【解答】解:方程f(x)=mx﹣恰有四个不相等的实数根可化为
函数f(x)=与函数y=mx﹣有四个不同的交点,
作函数f(x)=与函数y=mx﹣的图象如下,
由题意,C(0,﹣),B(1,0);
故kBC =,
当x>1时,f(x)=lnx,f′(x)=;
设切点A的坐标为(x1,lnx1),
则=;
解得,x1=;
故kAC =;
结合图象可得,
实数m的取值范围是(,).
故答案为:(,).
三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)
17.(12分)设函数.
(1)求函数f(x)的最小正周期和值域;
(2)记△ABC的内角A,B,C的对边分别为a,b,c,若,且,求角C的值.
【解答】解:(1)因为=,
所以f(x)的最小正周期为2π.
因为x∈R,所以,
所以f(x)的值域为[﹣1,1].
(2)由(1)得,
所以.
因为0<A<π,所以,
所以,
因为,
由正弦定理
可得,
所以sinB=1,
因为0<B<π,
所以,
故得:.
18.(12分)某厂家为了了解某新产品使用者的年龄情况,现随机调査100 位使用者的年龄整理后画出的频率分布直方图如图所示.
(1)求100名使用者中各年龄组的人数,并利用所给的频率分布直方图估计所有使用者的平均年龄;
(2)若已从年龄在[35,45),[45,55]的使用者中利用分层抽样选取了6人,再从这6人中选出2人,求这2人在不同的年龄组的概率.
【解答】解:(1)由图可得,各组年龄的人数分別为:10,30,40,20.
估计所有使用者的平均年龄为:0.1×20+0.3×30+0.4×40+0.2×50=37(岁)
(2)由题意可知抽取的6人中,年龄在[35,45)范围内的人数为4,记为a,b,c,d;
年龄在[45,55]范围内的人数为2,记为m,n.
从这6人中选取2人,结果共有15种:
(ab),(ac),(ad),(am),(an),(bc),
(bd),(bm),(bn),(cd),(cm),(cn),
(dm),(dn),(mn).
设“这2人在不同年龄组“为事件A.
则事件A所包含的基本事件有8种,故,
所以这2人在不同年龄组的概率为.
19.(12分)如图,边长为2的正方形ABCD与等边三角形ABE所在的平面互相垂直,M,N分别是DE,AB的中点.
(1)证明:MN∥平面 BCE;
(2)求三棱锥B﹣EMN的体积.
【解答】(1)证明:取AE中点P,连结MP,NP.
由题意可得MP∥AD∥BC,
∵MP⊄平面BCE,BC⊂平面BCE,∴MP∥平面BCE,
同理可证NP∥平面BCE.
∵MP∩NP=P,
∴平面MNP∥平面BCE,
又MN⊂平面MNP,
∴MN∥平面BCE;
(2)解:由(1)可得MP∥DA,且MP=DA,
∵平面ABCD⊥平面ABE,平面ABCD∩平面ABE=AB,且DA⊥AB,
∴DA⊥平面ABE,
∴M到平面ENB的距离为,
∵N为AB的中点,
∴,
∴==.
20.(12分)已知椭圆+=1(a>b>0)的左右焦点分别为F1、F2
,左顶点为A,若|F1F2|=2,椭圆的离心率为e=
(Ⅰ)求椭圆的标准方程.
(Ⅱ)若P是椭圆上的任意一点,求•的取值范围.
【解答】解:(I)由题意,∵|F1F2|=2,椭圆的离心率为e=
∴c=1,a=2,
∴b=,
∴椭圆的标准方程为+=1 …(4分)
(II)设P(x0,y0),则
∵A(﹣2,0),F1(﹣1,0),
∴•=(﹣1﹣x0)(﹣2﹣x0)+y02=x2+3x+5,
由椭圆方程得﹣2≤x≤2,二次函数开口向上,对称轴x=﹣6<﹣2
当x=﹣2时,取最小值0,
当x=2时,取最大值12.
∴•的取值范围是[0,12]…(12分)
21.(12分)已知函数f(x)=ex,直线l的方程为y=kx+b,(k∈R,b∈R).
(1)若直线l是曲线y=f(x)的切线,求证:f(x)≥kx+b对任意x∈R成立;
(2)若f(x)≥kx+b对任意x∈[0,+∞)恒成立,求实数k,b应满足的条件.
【解答】解:(1)因为f'(x)=ex,设切点为(t,et),所以k=et,b=et(1﹣t),
所以直线l的方程为:y=etx+et(1﹣t),
令函数F(x)=f(x)﹣kx﹣b,
即F(x)=ex﹣etx﹣et(1﹣t),F'(x)=ex﹣et,
所以F(x)在(﹣∞,t)单调递减,在(t,+∞)单调递增,
所以F(x)min=f(t)=0,
故F(x)=f(x)﹣kx﹣b≥0,
即f(x)≥kx+b对任意x∈R成立.
(2)令H(x)=f(x)﹣kx﹣b=ex﹣kx﹣b,x∈[0,+∞)H'(x)=ex﹣k,x∈[0,+∞),
①当k≤1时,H'(x)≥0,则H(x)在[0,+∞)单调递增,
所以H(x)min=H(0)=1﹣b≥0,b≤1,
即,符合题意.
②当k>1时,H(x)在[0,lnk]上单调递减,在[lnk,+∞)单调递增,
所以H(x)min=H(lnk)=k﹣klnk﹣b≥0,
即b≤k(1﹣lnk),
综上所述:满足题意的条件是或.
请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.
22.(10分)在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.
(1)求C的普通方程和l的倾斜角;
(2)设点P(0,2),l和C交于A,B两点,求|PA|+|PB|.
【解答】解:(1)由消去参数α,得
即C的普通方程为
由,得ρsinθ﹣ρcosθ①
将代入①得y=x+2
所以直线l的斜率角为.
(2)由(1)知,点P(0,2)在直线l上,可设直线l的参数方程为(t为参数)
即(t为参数),
代入并化简得
设A,B两点对应的参数分别为t1,t2.
则,所以t1<0,t2<0
所以.
23.已知函数f(x)=|x+1|.
(1)求不等式f(x)<|2x+1|﹣1的解集M;
(2)设a,b∈M,证明:f(ab)>f(a)﹣f(﹣b).
【解答】(1)解:①当x≤﹣1时,原不等式化为﹣x﹣1<﹣2x﹣2解得:x<﹣1;
②当时,原不等式化为x+1<﹣2x﹣2解得:x<﹣1,此时不等式无解;
③当时,原不等式化为x+1<2x,解得:x>1.
综上,M={x|x<﹣1或x>1};
(2)证明:设a,b∈M,∴|a+1|>0,|b|﹣1>0,
则 f(ab)=|ab+1|,f(a)﹣f(﹣b)=|a+1|﹣|﹣b+1|.
∴f(ab)﹣[f(a)﹣f(﹣b)]=f(ab)+f(﹣b)﹣f(a)=|ab+1|+|1﹣b|﹣|a+1|
=|ab+1|+|b﹣1|﹣|a+1|≥|ab+1+b﹣1|﹣|a+1|=|b(a+1)|﹣|a+1|
=|b|•|a+1|﹣|a+1|=|a+1|•(|b|﹣1|)>0,
故f(ab)>f(a)﹣f(﹣b)成立.