- 202.00 KB
- 2021-06-17 发布
第1讲 随机抽样
学习目标
目标分解一:.理解随机抽样的必要性和重要性.
目标分解二:会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.
重难点
准确计算长度比、面积比、体积比
合作探究
课堂设计
随堂手记
【课前自主复习区】
1.简单随机抽样
(1)定义:一般地,设一个总体含有N个个体,从中 n个个体作为样本(n≤N),且每次抽取时各个个体被抽到的 ,就称这样的抽样方法为简单随机抽样.
(2)常用方法: 和 .
2.系统抽样
(1)步骤:①先将总体的N个个体编号;
②根据样本容量n,当是整数时,取分段间隔k=;
③在第1段用 确定第一个个体编号l(l≤k);
④按照一定的规则抽取样本.
(2)适用范围:适用于 .
3.分层抽样
(1)定义:在抽样时,将总体分成 的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.
(2)适用范围:适用于总体由 的几个部分组成时.
【双基自测】
1.下列结论正确的打“√”,错误的打“×”.
(1)简单随机抽样是一种不放回抽样.( )
(2)在抽签法中,先抽的人抽中的可能性大.( )
(3)系统抽样在起始部分抽样时采用简单随机抽样.( )
(4)用系统抽样从102个学生中抽取20人,需剔除2人,这样对被剔除者不公平.( )
(5)在分层抽样中,每个个体被抽到的可能性与层数及分层有关. ( )
6
2.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( )
A.50 B.40 C.25 D.20
3.对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )
A.p1=p2<p3 B.p2=p3<p1 C.p1=p3<p2 D.p1=p2=p3
4 一支田径队有男运动员56人,女运动员若干人,用分层抽样的方法抽取容量为28的运动员时,抽取的男运动员是16人,则女运动员的人数是________.
5.从编号分别为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为
【课堂互动探究区】
目标分解一:.理解随机抽样的必要性和重要性.
(1)以下抽样方法是简单随机抽样的是( )
A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解对学校机构改革的意见
D.用抽签方法从10件产品中选取3件进行质量检验
(2)总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法是从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )
7816 6572 0802 6314 0702 4369 9728 0198
3204 9234 4935 8200 3623 4869 6938 7481
A.08 B.07 C.02 D.01
目标分解二:会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样的方法.
(1)某单位有840名职工,现采用系统抽样的方法抽取42人做问卷调查,
6
将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )
A.11 B.12
C.13 D.14
(2)(2017·豫晋冀高三模拟)某校三个年级共有24个班,学校为了了解同学们的心理状况,将每个班编号,依次为1到24,现用系统抽样方法,抽取4个班进行调查,若抽到编号之和为48,则抽到的最小编号为( )
A.2 B.3
C.4 D.5
系统抽样的特点
(1)适用于元素个数很多且均衡的总体.
(2)各个个体被抽到的机会均等.
(3)总体分组后,在起始部分抽样时采用的是简单随机抽样.
(4)如果总体容量N能被样本容量n整除,则抽样间隔为k=.
[注意] 用系统抽样法抽取样本,当不为整数时,取k=,即先从总体中用简单随机抽样的方法剔除(N-nk)个个体,且剔除多余的个体不影响抽样的公平性
例题3.(2017·贵州省七校联考)某高中共有学生1 000名,其中高一年级共有学生380人,高二年级男生有180人.如果在全校学生中抽取1名学生,抽到高二年级女生的概率为0.19,现采用分层抽样(按年级分层)在全校抽取100人,则应在高三年级中抽取的人数为________.
【我会做】
1..用随机数表法从100名学生(其中男生25人)中抽取20人进行测评,某男学生被抽到的概率是( )
A. B. C. D.
2.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n的样本,其中甲种产品有18件,则样本容量n=( )
A.54 B.90 C.45 D.126
3. .中央电视台为了解观众对《中国好歌曲》的意见,准备从502名现场观众中抽取10%进行座谈,现用系统抽样的方法完成这一抽样,则在这进行分组时,
6
需剔除________个个体,抽样间隔为________.
4.网络上流行一种“开心消消乐游戏” ,为了了解本班学生对此游戏的态度,高三(6)班计划在全班60人中展开调查,根据调查结果,班主任计划采用系统抽样的方法抽取若干名学生进行座谈,为此先对60名学生进行编号为:01,02,03,…,60,已知抽取的学生中最小的两个编号为03,09,则抽取的学生中最大的编号为________.
【我能做对】
★5.在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示.
若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是( )
A.3 B.4 C.5 D.6
6.已知某地区中小学生人数和近视情况分别如图1和图2所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )
A.100,10 B.200,10 C.100,20 D.200,20
6
课后作业:
7.某地区有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.在普通家庭中以简单随机抽样的方式抽取990户,在高收入家庭中以简单随机抽样的方式抽取100户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收入家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地区拥有3套或3套以上住房的家庭所占比例的合理估计是 .
8.有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:
组别
A
B
C
D
E
人数
50
100
150
150
50
(1)为了调查评委对7位歌手的支持情况,现用分层抽样方法从各组中抽取若干评委,其中从B组抽取6人,请将其余各组抽取的人数填入下表;
组别
A
B
C
D
E
人数
50
100
150
150
50
抽取人数
6
(2)在(1)中,若A,B两组被抽到的评委中各有2人支持1号歌手,现从这两组被抽到的评委中分别任选1人,求这2人都支持1号歌手的概率.
6
我的困惑:
6
相关文档
- 河北省邢台市高中物理第十一章机械2021-06-17 19:13:1911页
- 高中升旗演讲稿2021-06-17 19:12:193页
- 2020高中地理 第二章 地球上的大气2021-06-17 19:10:528页
- 2020学年高中物理 6 导体的电阻2021-06-17 19:08:343页
- 高中数学必修1人教A同步练习试题及2021-06-17 19:07:583页
- 高中语文教师研修计划范本2021-06-17 19:07:455页
- 高中物理 第5章 磁场 第3节 磁感应2021-06-17 19:07:457页
- 高中数学必修2教案3_示范教案(2_1_32021-06-17 19:06:285页
- 英语卷·2018届广东省珠海市普通高2021-06-17 19:05:3613页
- 高考备战冲刺指导高中数学必修15知2021-06-17 19:04:378页