• 505.00 KB
  • 2023-11-15 发布

2018届二轮复习(理)专题六 概率与统计第2讲学案(全国通用)

  • 20页
  • 当前文档由用户上传发布,收益归属用户
  • 下载文档
  1. 1、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  2. 2、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  3. 文档侵权举报QQ:3215808601
第2讲 概率、随机变量及其分布列 高考定位 1.计数原理、古典概型、几何概型的考查多以选择或填空的形式命题,中低档难度;2.概率模型多考查独立重复试验、相互独立事件、互斥事件及对立事件等;对离散型随机变量的分布列及期望的考查是重点中的“热点”,多在解答题的前三题的位置呈现,常考查独立事件的概率,超几何分布和二项分布的期望等.‎ 真 题 感 悟 ‎1.(2017·山东卷)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是(  )‎ A. B. C. D. 解析 由题意得,所求概率p==,故选C.‎ 答案 C ‎2.(2016·全国Ⅰ卷)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是(  )‎ A. B. C. D. 解析 如图所示,画出时间轴:‎ 小明到达的时间会随机的落在图中线段AB中,而当他的到达时间落在线段AC或DB时,才能保证他等车的时间不超过10分钟,根据几何概型得所求概率P==,故选B.‎ 答案 B ‎3.(2017·全国Ⅱ卷)一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X表示抽到的二等品件数,则D(X)=________.‎ 解析 有放回地抽取,是一个二项分布模型,其中p=0.02,n=100,则D(X)=‎ np(1-p)=100×0.02×0.98=1.96.‎ 答案 1.96‎ ‎4.(2017·全国Ⅲ卷)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:‎ 最高气温 ‎[10,15)‎ ‎[15,20)‎ ‎[20,25)‎ ‎[25,30)‎ ‎[30,35)‎ ‎[35,40)‎ 天数 ‎2‎ ‎16‎ ‎36‎ ‎25‎ ‎7‎ ‎4‎ 以最高气温位于各区间的频率估计最高气温位于该区间的概率.‎ ‎(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;‎ ‎(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?‎ 解 (1)由题意知,X所有的可能取值为200,300,500,‎ 由表格数据知 P(X=200)==0.2,‎ P(X=300)==0.4,‎ P(X=500)==0.4.‎ 因此X的分布列为 X ‎200‎ ‎300‎ ‎500‎ P ‎0.2‎ ‎0.4‎ ‎0.4‎ ‎(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑200≤n≤500.‎ 当300≤n≤500时,‎ 若最高气温不低于25,则Y=6n-4n=2n,‎ 若最高气温位于区间[20,25),则Y=6×300+2(n-300)-4n=1 200-2n;‎ 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;‎ 因此E(Y)=2n×0.4+(1 200-2n)×0.4+(800-2n)×0.2=640-0.4n.‎ 当200≤n<300时,‎ 若最高气温不低于20,则Y=6n-4n=2n;‎ 若最高气温低于20,则Y=6×200+2(n-200)-4n=800-2n;‎ 因此E(Y)=2n×(0.4+0.4)+(800-2n)×0.2=160+1.2n.‎ 所以n=300时,Y的数学期望达到最大值,最大值为520元.‎ 考 点 整 合 ‎1.概率模型公式及相关结论 ‎(1)古典概型的概率公式.‎ P(A)==.‎ ‎(2)几何概型的概率公式.‎ P(A)=.‎ ‎(3)条件概率.‎ 在A发生的条件下B发生的概率:P(B|A)=.‎ ‎(4)相互独立事件同时发生的概率:若A,B相互独立,则P(AB)=P(A)·P(B).‎ ‎(5)若事件A,B互斥,则P(A∪B)=P(A)+P(B),‎ P()=1-P(A).‎ ‎2.独立重复试验与二项分布 如果事件A在一次试验中发生的概率是p,那么它在n次独立重复试验中恰好发生k次的概率为Pn(k)=Cpk(1-p)n-k,k=0,1,2,…,n.用X表示事件A在n次独立重复试验中发生的次数,则X服从二项分布,即X~B(n,p)且P(X=k)=Cpk(1-p)n-k.‎ ‎3.超几何分布 在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=‎ ‎ ,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,此时称随机变量X服从超几何分布.超几何分布的模型是不放回抽样,超几何分布中的参数是M,N,n.‎ ‎4.离散型随机变量的均值、方差 ‎(1)离散型随机变量ξ的分布列为 ξ x1‎ x2‎ x3‎ ‎…‎ xi ‎…‎ n P p1‎ p2‎ p3‎ ‎…‎ pi ‎…‎ pn 离散型随机变量ξ的分布列具有两个性质:①pi≥0;‎ ‎②p1+p2+…+pi+…+pn=1(i=1,2,3,…,n).‎ ‎(2)E(ξ)=x1p1+x2p2+…+xipi+…+xnpn为随机变量ξ的数学期望或均值.‎ D(ξ)=(x1-E(ξ))2·p1+(x2-E(ξ))2·p2+…+(xi-E(ξ))2·pi+…+(xn-E(ξ))2·pn叫做随机变量ξ的方差.‎ ‎(3)数学期望、方差的性质.‎ ‎①E(aξ+b)=aE(ξ)+b,D(aξ+b)=a2D(ξ).‎ ‎②X~B(n,p),则E(X)=np,D(X)=np(1-p).‎ ‎③X服从两点分布,则E(X)=p,D(X)=p(1-p).‎ 热点一 古典概型与几何概型 ‎【例1】 (1)(2016·北京卷)从甲、乙等5名学生中随机选出2人,则甲被选中的概率为(  )‎ A. B. C. D. ‎(2)(2016·山东卷)在[-1,1]上随机地取一个数k,则事件“直线y=kx与圆(x-5)2+y2=9相交”发生的概率为________.‎ 解析 (1)把5名同学依次编号为甲乙丙丁戊,基本事件空间Ω={甲乙,甲丙,甲丁,甲戊,乙丙,乙丁,乙戊,丙丁,丙戊,丁戊},包含基本事件总数n=10.设A表示事件“甲被选中”,则A={甲乙,甲丙,甲丁,甲戊},包含基本事件数m=4.所以概率为P==.‎ ‎(2)若直线y=kx与圆(x-5)2+y2=9相交,则有圆心到直线的距离d=<3,解之得-3.841,‎ 所以有95%的把握认为经常使用手机对学习成绩有影响.‎ ‎(2)依题意,随机变量X的可能取值为0,1,2.‎ 则P(X=0)=(1-p1)(1-p2),P(X=2)=p1p2,‎ P(X=1)=(1-p1)p2+p1(1-p2),‎ ‎∴随机变量X的分布列为 X ‎0‎ ‎1‎ ‎2‎ P ‎(1-p1)(1-p2)‎ ‎(1-p1)p2+p1(1-p2)‎ p1p2‎ ‎∴E(X)=(1-p1)p2+p1(1-p2)+2p1p2=p1+p2=1.12,所以p1=1.12-p2=0.72,‎ 因此p1-p2=0.72-0.4=0.32≥0.3,两人适合结为“师徒”.‎ 探究提高 1.本题考查统计与概率的综合应用,意在考查考生的识图能力和数据处理能力.此类问题多涉及相互独立事件、互斥事件的概率,在求解时,要明确基本事件的构成.‎ ‎2.联系高中生使用手机这一生活现象,利用数学中列联表、独立性检验,‎ 予以研究二者的相关性,考查了茎叶图、相互独立事件同时发生、分布列.题目主旨,引导学生正确对待使用手机,切勿玩物丧志,并倡导互帮互助的学习风气.‎ ‎【训练4】 (2017·全国Ⅰ卷改编)为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).‎ ‎(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ-3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;‎ ‎(2)一天内抽检零件中,如果出现了尺寸在(μ-3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.‎ ‎①试说明上述监控生产过程方法的合理性;‎ ‎②下面是检验员在一天内抽取的16个零件的尺寸:‎ 经计算得=xi=9.97,s==≈0.212,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.‎ 用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(-3,+3)之外的数据,用剩下的数据估计μ(精确到0.01).‎ 附:若随机变量Z服从正态分布N(μ,σ2),则P(μ-3σm)=0.3,‎ 则P(X>8-m)=(  )‎ A.0.2 B.0.3‎ C.0.7 D.与σ的值有关 解析 ∵随机变量X服从正态分布N(4,σ2),‎ ‎∴正态曲线的对称轴是x=4,‎ ‎∵P(X>m)=0.3,且m与8-m关于x=4对称,‎ 由正态曲线的对称性,‎ 得P(X>m)=P(X<8-m)=0.3,‎ 故P(X>8-m)=1-0.3=0.7.‎ 答案 C ‎5.(2017·浙江卷)已知随机变量ξi满足P(ξi=1)=pi,P(ξi=0)=1-pi,i=1,2.若0<p1<p2<,则(  )‎ A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)‎ B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)‎ C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)‎ D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)‎ 解析 由题设可知E(ξ1)=p1,E(ξ2)=p2,从而E(ξ1)<E(ξ2),‎ 又D(ξ1)=p1(1-p1),D(ξ2)=p2(1-p2),‎ 所以D(ξ1)-D(ξ2)=(p1-p2)(1-p1-p2)<0.‎ 故D(ξ1)<D(ξ2).‎ 答案 A 二、填空题 ‎6.(2017·潍坊三模)在[0,a](a>0)上随机抽取一个实数x,若x满足<0的概率为,则实数a的值为____________.‎ 解析 由<0,得-10),‎ 因此所求事件的概率P==,则a=4.‎ 答案 4‎ ‎7.(2017·天津卷)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个(用数字作答).‎ 解析 当不含偶数时,有A=120个,‎ 当含有一个偶数时,有CCA=960个,‎ 所以这样的四位数共有1 080个.‎ 答案 1 080‎ ‎8.(2016·四川卷)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X的均值是________.‎ 解析 由题可知,在一次试验中,试验成功(即至少有一枚硬币正面向上)的概率为P=1-×=,依题意X~B,则E(X)=2×=.‎ 答案  三、解答题 ‎9.(2017·成都二诊)甲乙两名同学参加定点投篮测试,已知两人投中的概率分别是和,假设两人投篮结果相互没有影响,每人各次投球是否投中也没有影响.‎ ‎(1)若每人投球3次(必须投完),投中2次或2次以上,记为达标,求甲达标的概率;‎ ‎(2)若每人有4次投球机会,如果连续两次投中,则记为达标.达标或能断定不达标,则终止投篮.记乙本次测试投球的次数为X,求X的分布列和数学期望E(X).‎ 解 (1)记“甲达标”为事件A,则P(A)=C××+=.‎ ‎(2)X的所有可能的值为2,3,4.‎ P(X=2)==,‎ P(X=3)=××+××++××=,‎ P(X=4)=××+××=.‎ 所以X的分布列为:‎ X ‎2‎ ‎3‎ ‎4‎ P ‎∴E(X)=2×+3×+4×=.‎ ‎10.(2017·北京卷)为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成下图,其中“*”表示服药者,“+”表示未服药者.‎ ‎(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;‎ ‎(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);‎ ‎(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)‎ 解 (1)由题图知,在服药的50名患者中,指标y的值小于60的有15人,‎ 所以从服药的50名患者中随机选出一人,此人指标y的值小于60的概率为=0.3.‎ ‎(2)由题图知,A,B,C,D四人中,指标x的值大于1.7的有2人:A和C.‎ 所以ξ的所有可能取值为0,1,2.‎ P(ξ=0)==,P(ξ=1)==,P(ξ=2)==.‎ 所以ξ的分布列为 ξ ‎0‎ ‎1‎ ‎2‎ P E(ξ)=0×+1×+2×=1.‎ ‎(3)由图知100名患者中服药者指标y数据的方差比未服药者指标y数据的方差大.‎ ‎11.(2017·新乡三模)为推行“新课堂”教学法,某化学老师分别用传统教学和“新课堂”两种不同的教学方式,在甲、乙两个平行班级进行教学实验.为了比较教学效果,期中考试后,分别从两个班级中各随机抽取20名学生的成绩进行统计,结果如下表:记成绩不低于70分者为“成绩优良”.‎ 分数 ‎[50,60)‎ ‎[60,70)‎ ‎[70,80)‎ ‎[80,90)‎ ‎[90,100]‎ 甲班频数 ‎5‎ ‎6‎ ‎4‎ ‎4‎ ‎1‎ 乙班频数 ‎1‎ ‎3‎ ‎6‎ ‎5‎ ‎5‎ ‎(1)由以上统计数据填写下面2×2列联表,并判断能否在犯错误的概率不超过0.025的前提下认为“成绩优良与教学方式有关”?‎ 甲班 乙班 总计 成绩优良 成绩不优良 总计 附:K2=,其中n=a+b+c+d.‎ 临界值表 P(K2≥k0)‎ ‎0.10‎ ‎0.05‎ ‎0.025‎ ‎0.010‎ k0‎ ‎2.706‎ ‎3.841‎ ‎5.024‎ ‎6.635‎ ‎(2)现从上述40人中,学校按成绩是否优良采用分层抽样的方法抽取8人进行考核.在这8人中,记成绩不优良的乙班人数为X,求X的分布列及数学期望.‎ 解 (1)由统计数据得2×2列联表:‎ 甲班 乙班 总计 成绩优良 ‎9‎ ‎16‎ ‎25‎ 成绩不优良 ‎11‎ ‎4‎ ‎15‎ 总计 ‎20‎ ‎20‎ ‎40‎ 根据2×2列联表中的数据,得K2的观测值为k=≈5.227>5.024,‎ ‎∴能在犯错概率不超过0.025的前提下认为“成绩优良与教学方式有关”.‎ ‎(2)由表可知在8人中成绩不优良的人数为×8=3,则X的可能取值为0,1,2,3.‎ P(X=0)==;P(X=1)==;‎ P(X=2)==;P(X=3)==.‎ ‎∴X的分布列为:‎ X ‎0‎ ‎1‎ ‎2‎ ‎3‎ P ‎∴E(X)=0×+1×+2×+3×=.‎

相关文档