- 151.50 KB
- 2024-04-23 发布
第3讲 导数的应用(二)
A级 基础演练(时间:30分钟 满分:55分)
一、选择题(每小题5分,共20分)
1.(2013·北京东城模拟)函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内有极小值点( ).
A.1个 B.2个 C.3个 D.4个
答案 A
2.(2013·苏州一中月考)已知函数f(x)=x3+ax2+(a+6)x+1有极大值和极小值,则实数a的取值范围是 ( ).
A.(-1,2) B.(-∞,-3)∪(6,+∞)
C.(-3,6) D.(-∞,-1)∪(2,+∞)
解析 f′(x)=3x2+2ax+(a+6),因为函数有极大值和极小值,所以f′(x)=0有两个不相等的实数根,所以Δ=4a2-4×3(a+6)>0,解得a<-3或a>6.
答案 B
3.(2013·抚顺质检)函数y=的极小值为 ( ).
A. B.0 C. D.1
解析 函数的定义域为(0,+∞),
y′==.
函数y′与y随x变化情况如下:
x
(0,1)
1
(1,e2)
e2
(e2,+∞)
y′
-
0
+
0
-
y
0
·
则当x=1时函数y=取到极小值0.
答案 B
4.(2013·南京模拟)设f(x)是一个三次函数,f′(x)为其导函数,如图所示的是y=x·f′(x)的图象的一部分,则f(x)的极大值与极小值分别是 ( ).
A.f(1)与f(-1) B.f(-1)与f(1)
C.f(-2)与f(2) D.f(2)与f(-2)
解析 由图象知f′(2)=f′(-2)=0.∵x>2时,y=x·f′(x)>0,∴f′(x)>0,∴y=f(x)在(2,+∞)上单调递增;同理f(x)在(-∞,-2)上单调递增,在(-2,2)上单调递减,
∴y=f(x)的极大值为f(-2),极小值为f(2),故选C.
答案 C
二、填空题(每小题5分,共10分)
5.已知函数y=f(x)=x3+3ax2+3bx+c在x=2处有极值,其图象在x=1处的切线平行于直线6x+2y+5=0,则f(x)极大值与极小值之差为________.
解析 ∵y′=3x2+6ax+3b,
⇒
∴y′=3x2-6x,令3x2-6x=0,则x=0或x=2.
∴f(x)极大值-f(x)极小值=f(0)-f(2)=4.
答案 4
6.已知函数f(x)=(其中e为自然对数的底数,且e≈2.718).若f(6-a2)>f(a),则实数a的取值范围是________.
解析 ∵f′(x)=当x≤e时,f′(x)=6-2x=2(3-x)>0,当x>e时,f′(x)=1-=>0,∴f(x)在R上单调递增.又f(6-a2)>f(a),∴6-a2>a,解之得-30),
∵函数f(x)在[1,+∞)上为增函数,∴f′(x)=≥0对x∈[1,+∞)恒成立,∴ax-1≥0对x∈[1,+∞)恒成立,即a≥对x∈[1,+∞)恒成立,∴a≥1.
答案 [1,+∞)
三、解答题(共25分)
5.(12分)设函数f(x)=x3+bx2+cx+d(a>0),且方程f′(x)-9x=0的两根分别为1,4.
(1)当a=3且曲线y=f(x)过原点时,求f(x)的解析式;
(2)若f(x)在(-∞,+∞)内无极值点,求a的取值范围.
解 由f(x)=x3+bx2+cx+d得f′(x)=ax2+2bx+c.
因为f′(x)-9x=ax2+2bx+c-9x=0的两个根分别为1,4,
所以(*)
(1)当a=3时,由(*)式得
解得b=-3,c=12.又因为曲线y=f(x)过原点,
所以d=0.故f(x)=x3-3x2+12x.
(2)由于a>0,所以f(x)=x3+bx2+cx+d在(-∞,+∞)内无极值点等价于f′(x)=ax2+2bx+c≥0在(-∞,+∞)内恒成立.由(*)式得2b=9-5a,c=4a.
又Δ=(2b)2-4ac=9(a-1)(a-9),
由得a∈[1,9].
即a的取值范围是[1,9].
6.(13分)(2012·新课标全国)已知函数f(x)满足f(x)=f′(1)ex-1-f(0)x+x2.
(1)求f(x)的解析式及单调区间;
(2)若f(x)≥x2+ax+b,求(a+1)b的最大值.
解 (1)由已知得f′(x)=f′(1)ex-1-f(0)+x.
所以f′(1)=f′(1)-f(0)+1,即f(0)=1.
又f(0)=f′(1)e-1,所以f′(1)=e.
从而f(x)=ex-x+x2.由于f′(x)=ex-1+x,
故当x∈(-∞,0)时,f′(x)<0;
当x∈(0,+∞)时,f′(x)>0.
从而,f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增.
(2)由已知条件得ex-(a+1)x≥b.①
(i)若a+1<0,则对任意常数b,当x<0,且x<时,可得ex-(a+1)x0,设g(x)=ex-(a+1)x,
则g′(x)=ex-(a+1).
当x∈(-∞,ln(a+1))时,g′(x)<0;
当x∈(ln(a+1),+∞)时,g′(x)>0.
从而g(x)在(-∞,ln(a+1))上单调递减,在(ln(a+1),+∞)上单调递增.
故g(x)有最小值g(ln(a+1))=a+1-(a+1)ln(a+1).
所以f(x)≥x2+ax+b等价于b≤a+1-(a+1)·ln(a+1).②
因此(a+1)b≤(a+1)2-(a+1)2ln(a+1).
设h(a)=(a+1)2-(a+1)2ln(a+1),则
h′(a)=(a+1)[1-2ln(a+1)].
所以h(a)在(-1,e-1)上单调递增,在(e-1,+∞)上单调递减,故h(a)在a
=e-1处取得最大值.
从而h(a)≤,即(a+1)b≤.
当a=e-1,b=时,②式成立.故f(x)≥x2+ax+b.
综上得,(a+1)b的最大值为.
特别提醒:教师配赠习题、课件、视频、图片、文档等各种电子资源见《创新设计·高考总复习》光盘中内容.