- 25.09 KB
- 2023-12-27 发布
课时分层训练(三十九) 数学归纳法
(对应学生用书第242页)
A组 基础达标
(建议用时:30分钟)
一、选择题
1.用数学归纳法证明2n>2n+1,n的第一个取值应是( )
A.1 B.2
C.3 D.4
C [∵n=1时,21=2,2×1+1=3,2n>2n+1不成立;
n=2时,22=4,2×2+1=5,2n>2n+1不成立;
n=3时,23=8,2×3+1=7,2n>2n+1成立.
∴n的第一个取值应是3.]
2.一个关于自然数n的命题,如果验证当n=1时命题成立,并在假设当n=k(k≥1且k∈N*)时命题成立的基础上,证明了当n=k+2时命题成立,那么综合上述,对于( )
A.一切正整数命题成立
B.一切正奇数命题成立
C.一切正偶数命题成立
D.以上都不对
B [本题证的是对n=1,3,5,7,…命题成立,即命题对一切正奇数成立.]
3.在数列{an}中,a1=,且Sn=n(2n-1)an,通过求a2,a3,a4,猜想an的表达式为( ) 【导学号:97190218】
A. B.
C. D.
C [由a1=,Sn=n(2n-1)an求得a2==,a3==,a4==.猜想an=.]
4.对于不等式<n+1(n∈N*),某同学用数学归纳法证明的过程如下:
(1)当n=1时,<1+1,不等式成立.
(2)假设当n=k(k∈N*)时,不等式<k+1成立,当n=k+1时,=<==(k+1)+1.
∴当n=k+1时,不等式成立,则上述证法( )
A.过程全部正确
B.n=1验得不正确
C.归纳假设不正确
D.从n=k到n=k+1的推理不正确
D [当n=k+1时,没有应用n=k时的假设,不是数学归纳法.]
5.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为( )
A.n+1 B.2n
C. D.n2+n+1
C [1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;…;n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域.]
二、填空题
6.用数学归纳法证明1+2+3+…+n2=,则当n=k+1时左端应在n=k的基础上加上的项为________.
(k2+1)+(k2+2)+…+(k+1)2 [当n=k时左端为1+2+3+…+k+(k+1)+(k+2)+…+k2,则当n=k+1时,
左端为1+2+3+…+k2+(k2+1)+(k2+2)+…+(k+1)2,
故增加的项为(k2+1)+(k2+2)+…+(k+1)2.]
7.数列{an}中,已知a1=2,an+1=(n∈N*),依次计算出a2,a3,a4,猜想an=________.
[a1=2,a2==,a3==,a4=+1=.
由此猜想an是以分子为2,分母是以首项为1,公差为6的等差数列,∴an=.]
8.凸n多边形有f(n)条对角线.则凸(n+1)边形的对角线的条数f(n+1)与f(n)的递推关系式为________.
f(n+1)=f(n)+n-1 [f(n+1)=f(n)+(n-2)+1=f(n)+n-1.]
三、解答题
9.用数学归纳法证明:1+++…+<2-(n∈N*,n≥2).
【导学号:97190219】
[证明] (1)当n=2时,1+=<2-=,命题成立.
(2)假设n=k时命题成立,即
1+++…+<2-.
当n=k+1时,1+++…++<2-+<2-+=2-+-
=2-命题成立.
由(1)(2)知原不等式在n∈N*,n≥2时均成立.
10.数列{an}满足Sn=2n-an(n∈N*).
(1)计算a1,a2,a3,a4,并由此猜想通项公式an;
(2)证明(1)中的猜想.
[解] (1)当n=1时,a1=S1=2-a1,∴a1=1;
当n=2时,a1+a2=S2=2×2-a2,∴a2=;
当n=3时,a1+a2+a3=S3=2×3-a3,∴a3=;
当n=4时,a1+a2+a3+a4=S4=2×4-a4,
∴a4=.
由此猜想an=(n∈N*).
(2)证明 ①当n=1时,a1=1,结论成立.
②假设n=k(k≥1且k∈N*)时,结论成立,
即ak=,
那么n=k+1时,
ak+1=Sk+1-Sk=2(k+1)-ak+1-2k+ak=2+ak-ak+1,
∴2ak+1=2+ak.
∴ak+1===.
所以当n=k+1时,结论成立.
由①②知猜想an=(n∈N*)成立.
B组 能力提升
(建议用时:15分钟)
11.(2017·昆明诊断)设n为正整数,f(n)=1+++…+,经计算得f(2)=,f(4)>2,f(8)>,f(16)>3,f(32)>,观察上述结果,可推测出一般结论( )
A.f(2n)> B.f(n2)≥
C.f(2n)≥ D.以上都不对
C [∵f(22)>,f(23)>,f(24)>,f(25)>,∴当n≥1时,有f(2n
)≥.]
12.设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,则f(4)=__________;当n>4时,f(n)=__________(用n表示).
5 (n+1)(n-2)(n≥3) [f(3)=2,f(4)=f(3)+3=2+3=5,
f(n)=f(3)+3+4+…+(n-1)
=2+3+4+…+(n-1)
=(n+1)(n-2)(n≥3).]
13.数列{xn}满足x1=0,xn+1=-x+xn+c(n∈N*).
(1)证明:{xn}是递减数列的充要条件是c<0;
(2)若0<c≤,证明数列{xn}是递增数列. 【导学号:97190220】
[证明] (1)充分性:若c<0,由于xn+1=-x+xn+c≤xn+c<xn,
∴数列{xn}是递减数列.
必要性:若{xn}是递减数列,则x2<x1,且x1=0.
又x2=-x+x1+c=c,∴c<0.
故{xn}是递减数列的充要条件是c<0.
(2)若0<c≤,要证{xn}是递增数列.
即xn+1-xn=-x+c>0,
即证xn<对任意n≥1成立.
下面用数学归纳法证明:
当0<c≤时,xn<对任意n≥1成立.
①当n=1时,x1=0<≤,结论成立.
②假设当n=k(k≥1,k∈N*)时结论成立,即xk<.
∵函数f(x)=-x2+x+c在区间内单调递增,所以xk+1=f(xk)<f()=,
∴当n=k+1时,xk+1<成立.
由①,②知,xn<对任意n≥1,n∈N*成立.
因此,xn+1=xn-x+c>xn,即{xn}是递增数列.