- 180.96 KB
- 2023-11-26 发布
课时分层训练(四十六) 利用空间向量证明平行与垂直
(对应学生用书第289页)
A组 基础达标
一、选择题
1.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则( )
A.l∥α B.l⊥α
C.l⊂α D.l与α相交
B [∵n=-2a,∴a与平面α的法向量平行,∴l⊥α.]
2.已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ).若a,b,c三向量共面,则实数λ等于( )
A. B.
C. D.
D [由题意得c=ta+μb=(2t-μ,-t+4μ,3t-2μ),
∴∴]
3.若=λ+μ,则直线AB与平面CDE的位置关系是( )
【导学号:79140251】
A.相交 B.平行
C.在平面内 D.平行或在平面内
D [∵=λ+μ,∴、、共面,
∴AB与平面CDE平行或在平面CDE内.]
4.(2017·西安月考)如图778,F是正方体ABCDA1B1C1D1的棱CD的中点.E是BB1上一点,若D1F⊥DE,则有( )
图778
A.B1E=EB
B.B1E=2EB
C.B1E=EB
D.E与B重合
A [分别以DA、DC、DD1为x、y、z轴建立空间直角坐标系(图略),设正方体的棱长为2,则D(0,0,0),F(0,1,0),D1(0,0,2),设E(2,2,z),=(0,1,-2),=(2,2,z),∵·=0×2+1×2-2z=0,∴z=1,∴B1E=EB.]
5.如图779所示,在平行六面体ABCDA1B1C1D1中,点M,P,Q分别为棱AB,CD,BC的中点,若平行六面体的各棱长均相等,则:
图779
①A1M∥D1P;
②A1M∥B1Q;
③A1M∥平面DCC1D1;
④A1M∥平面D1PQB1.
以上说法正确的个数为( )
A.1 B.2
C.3 D.4
C [=+=+,=+=+,∴∥,所以A1M∥D1P,由线面平行的判定定理可知,A1M∥平面DCC1D1,A1M∥平面D1PQB1.①③④正确.]
二、填空题
6.如图7710所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.
图7710
垂直 [以A为原点,分别以,,所在直线为x,y,z轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A(0,0,0),M,O,N,·=·=0,∴ON与AM垂直.]
7.(2017·广州质检)已知平面α内的三点A(0,0,1),B(0,1,0),C(1,0,0),平面β的一个法向量n=(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.
α∥β [设平面α的法向量为m=(x,y,z),
由m·=0,得x·0+y-z=0⇒y=z,
由m·=0,得x-z=0⇒x=z,取x=1,
∴m=(1,1,1),m=-n,
∴m∥n,∴α∥β.]
8.已知=(1,5,-2),=(3,1,z),若⊥,=(x-1,y,-3),且BP⊥平面ABC,则实数x+y=________.
【导学号:79140252】
[由条件得
解得x=,y=-,z=4,
所以x+y=-=.]
三、解答题
9.如图7711,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD.证明:平面PQC⊥平面DCQ.
图7711
[证明] 如图,以D为坐标原点,线段DA的长为单位长,射线DA,DP,DC分别为x轴,y轴,z轴的正半轴建立空间直角坐标系Dxyz.
依题意有Q(1,1,0),C(0,0,1),P(0,2,0),
则=(1,1,0),=(0,0,1),=(1,-1,0).
∴·=0,·=0.
即PQ⊥DQ,PQ⊥DC,
又DQ∩DC=D,∴PQ⊥平面DCQ,
又PQ平面PQC,∴平面PQC⊥平面DCQ.
10.(2017·郑州调研)如图7712所示,四棱锥PABCD的底面是边长为1的正方形,PA⊥CD,PA=1,PD=,E为PD上一点,PE=2ED.
图7712
(1)求证:PA⊥平面ABCD;
(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出F点的位置,并证明;若不存在,说明理由.
[解] (1)证明:∵PA=AD=1,PD=,
∴PA2+AD2=PD2,
即PA⊥AD.
又PA⊥CD,AD∩CD=D,∴PA⊥平面ABCD.
(2)以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴建立空间直角坐标系.
则A(0,0,0),B(1,0,0),C(1,1,0),P(0,0,1),
E,=(1,1,0),=.设平面AEC的法向量为n=(x,y,z),
则即令y=1,则n=(-1,1,-2).
假设侧棱PC上存在一点F,且=λ(0≤λ≤1),
使得BF∥平面AEC,则·n=0.
又∵=+=(0,1,0)+(-λ,-λ,λ)=(-λ,1-λ,λ),
∴·n=λ+1-λ-2λ=0,∴λ=,
∴存在点F,使得BF∥平面AEC,且F为PC的中点.
B组 能力提升
11.如图7713,正方形ABCD与矩形ACEF所在平面互相垂直,AB=,AF=1,M在EF上,且AM∥平面BDE.则M点的坐标为( )
图7713
A.(1,1,1) B.
C. D.
C [设AC与BD相交于O点,连接OE,由AM∥平面BDE,且AM平面ACEF,平面ACEF∩平面BDE=OE,∴AM∥EO,
又O是正方形ABCD对角线交点,
∴M为线段EF的中点.
在空间坐标系中,E(0,0,1),F(,,1).
由中点坐标公式,知点M的坐标.]
12.已知点P是平行四边形ABCD所在的平面外一点,如果=(2,-1,-4),=(4,2,0),=(-1,2,-1).对于结论:①AP⊥AB;②AP⊥AD;③是平面ABCD的法向量;④∥.其中正确的是________.
【导学号:79140253】
①②③ [∵·=0,·=0,
∴AB⊥AP,AD⊥AP,则①②正确.
又与不平行,
∴是平面ABCD的法向量,则③正确.
∵=-=(2,3,4),=(-1,2,-1),
∴与不平行,故④错误.]
13.(2017·北京房山一模)如图7714,四棱锥PABCD的底面为正方形,侧棱PA⊥底面ABCD,
图7714
且PA=AD=2,E,F,H分别是线段PA,PD,AB的中点.
求证:(1)PB∥平面EFH;
(2)PD⊥平面AHF.
[证明] 建立如图所示的空间直角坐标系Axyz.
∴A(0,0,0),B(2,0,0),C(2,2,0),D(0,2,0),
P(0,0,2),E(0,0,1),
F(0,1,1),H(1,0,0).
(1)∵=(2,0,-2),=(1,0,-1),
∴=2,∴PB∥EH.
∵PB平面EFH,且EH平面EFH,
∴PB∥平面EFH.
(2)∵=(0,2,-2),=(1,0,0),=(0,1,1),
∴·=0×0+2×1+(-2)×1=0,
·=0×1+2×0+(-2)×0=0,
∴PD⊥AF,PD⊥AH.
又∵AF∩AH=A,∴PD⊥平面AHF.