- 329.29 KB
- 2023-11-24 发布
专题8 几何概型
1.几何概型的定义
如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型.
2.几何概型的特点
(1)试验中所有可能出现的结果(基本事件)有无限多个.
(2)每个基本事件出现的可能性相等.
3.几何概型的概率公式
P(A)=.
例1 某公共汽车站,每隔15分钟有一辆车发出,并且发出前在车站停靠3分钟.
(1)求乘客到站候车时间大于10分钟的概率;
(2)求候车时间不超过10分钟的概率;
(3)求乘客到达车站立即上车的概率.
变式1 在等腰Rt△ABC中,在斜边AB上取一点M,则AM的长小于AC的长的概率为( )
A. B. C. D.
例2 向面积为S的△ABC内任意投一点P,则△PBC的面积小于的概率是多少?
变式2 如右图,在半径为1的半圆内放置一个边长为的正方形ABCD,向半圆内任投一点,则该点落在正方形内的概率为________.
例3 已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取点M,求使四棱锥M-ABCD的体积小于的概率.
变式3 已知正三棱锥S-ABC的底面边长为a,高为h,在正三棱锥内取点M,试求点M到底面的距离小于的概率.
A级
1.在区间[-1,1]上任取两数x和y,组成有序实数对(x,y),记事件A为“x2+y2<1”,则P(A)等于( )
A. B. C.π D.2π
2.在棱长为2的正方体ABCD-A1B1C1D1中,点O为底面ABCD的中心,在正方体ABCD-A1B1C1D1内随机取一点P,则点P到点O的距离大于1的概率为( )
A. B.1- C. D.1-
3.已知△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为( )
A. B. C. D.
4.在长为10厘米的线段AB上任取一点G,用AG为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是( )
A. B. C. D.
5.有一个圆面,圆面内有一个内接正三角形,若随机向圆面上投一镖都中圆面,则镖落在三角形内的概率为________.
6.在边长为2的正三角形ABC内任取一点P,则使点P到三个顶点的距离至少有一个小于1的概率是________.
7.平面内有一组平行线,且相邻平行线间的距离为3 cm,把一枚半径为1 cm的硬币任意投掷在这个平面内,则硬币不与任何一条平行线相碰的概率是________.
B级
8.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( )
A. B. C. D.
9.ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为( )
A. B.1- C. D.1-
10.有四个游戏盘,如下图所示,如果撒一粒黄豆落在阴影部分,则可中奖,小明希望中奖机会大,他应当选择的游戏盘为( )
11.两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,灯与两端距离都大于2 m的概率为________.
12.如图,在边长为1的正方形中随机撒1 000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积为________.
13.取一个边长为a的正方形,如图所示,随机地向正方形内丢一粒沙子,求沙子落入阴影部分的概率.
14.设关于x的一元二次方程x2+2ax+b2=0.
(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.
(2)若a是从区间[0,3]上任取的一个数,b是从区间[0,2]上任取的一个数,求上述方程有实根的概率.
详解答案
典型例题
例1 解 (1)如图所示,设相邻两班车的发车时刻为T1、T2,T1T2=15.
设T0T2=3,TT0=10,记“乘客到站候车时间大于10分钟”为事件A.则当乘客到站时刻t落到T1T上时,事件A发生.
∵T1T=15-3-10=2,T1T2=15,
∴P(A)==.
(2)如图所示,当t落在TT2上时,候车时间不超过10分钟,故所求概率为=.
(3)如图所示,当t落在T0T2上时,乘客立即上车,故所求概率为==.
变式1 A [在AB上截取AC′=AC.点M随机地落在线段AB上,故线段AB为区域D.当点M位于图中线段AC′上时,AM